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The Gravity of Hades 
ANDREW j. SIMOSON 

King College 
Bristol, TN 37620 

ajsimoso@king.edu 

Imagine being beamed into a chamber deep within the Earth, such as depicted in the 
Jules Ve rne cave rn of FIGURE I. Is the accelerati on due to  gravity stronger or weaker 
in the chamber than at the surface of the Earth? If the reader is hesitant in answering 
immediately, here 's h ow Le onard Euler answered the questi on in 1760 [3, volume I, 
Letter L, p. 182]: 

We are certain . . . that gravity ... acts with the greatest force at the surface of 
the earth, and is diminished in proportion as it removes from thence, whether by 
penetrating towards the centre or rising above the surface of the globe. 

Figure 1 Frontispiece for Verne's 1 871 publication of journey to the Center of the Earth, 
1 00 miles below Iceland 

To answer this questi on, we c onsider vari ous m odels of the Earth 's structure that 
have been prop osed over the years. We show that 

• for homogene ously dense planets -Euler's implicit model -gravity weakens with 
descent from the surface; 

• for a planet p ossessing a homogene ous mantle that is less than 2/3 as dense as its 
c ore, a l ocal minimum for gravity intensity exists within a su fficiently thick mantle; 

• for our own Earth, having a s olid inner c ore, a less dense liquid outer c ore, and an 
extensive even less dense mantle, gravity intensifies with descent from -9.8 m js 2 at 
the surface to  an extreme of -10.8 m js 2 where the mantle meets the c ore. 

We als o give a c onditi on involving only surface density and mean density that deter
mines whether gravity increases or decreases with depth from the surface of a planet; 
and we c onclude with an analysis of a body falling through a classically envisi oned 
hole through the Ea rth. 
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Some prel iminary c lass i ca l  mechani cs 

To find the gravitational acceleration induced by the Earth on a particular point P ,  we 
follow Newton and first find the gravitational acceleration induced by each point of the 
Earth on P ,  and then take the aggregate of these accelerations as the total acceleration 
induced by the Earth. With this idea in mind, let the mass m of a body be condensed 
to the single point Q = (x, y, z). We wish to determine the gravitational acceleration 
a(s) induced by the mass at Q in the direction k = (0, 0, I) on point P = (0, 0, s). 
See FIGURE 2 .  

k 

p 
(O.O,s) : 

I 
I 
I 
I 

a(s)k t 
z-ax is 

Figure 2 The pull a(s) by Q on P 

We start with Newton's law of gravitation, telling us that the force of gravity be
tween two single-point masses a and b separated by r units is Gab I r2, where G � 
6.67 x w-1 1  Nm2 lkg2 , the universal gravitation constant. Since the force on a mass 
is equal to mass times acceleration, the gravitational acceleration on the point P in 

the direction PQ is Gm 1 (x2 + y2 + (z -s )2) .  But we want only the portion of this 

attraction in the direction k. Note that if ljJ is the angle between P Q and k, then 

, ,, (x, y, z-s )· (O, O, l) z-s 
cos 'f' = = ----;:.::::;;:==::::;;:====:::::;;: Jx2 + y2 + (z-s)2 Jx2 + y2 + (z-s)2 

Therefore a(s) = cos lj1Gml(x2 + y2 + (z-s) 2) ,  which we write as 

Ideal planet model s 

a(s) = 
Gm(z-s) 

3 • 

(x2 + y2 + (z _ s) 2) 2 

A point mass at (x,y,z) 

(1) 

To apply ( 1) to calculate the gravitational acceleration a for a heavenly body at distance 
s from its center of mass, we focus on ideal planets, those with radius R for which 
each of its concentric spherical shells is of constant density. Though our planet is 
best described as an oblate spheroid which, when compared to the best approximating 
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sphere, is flattened at the poles by about 14 km and bulges at the equator by about 
7 km, and though its shells have only approximately constant density, the Earth is 
viewed as an ideal planet for the purposes of this paper. For each ideal planet we let 
a (s) be the outward radial gravitational acceleration induced by the planet at s units 
from its center. For each ideal planet, we presently show that a (s) S 0 for all s :::: 0 .  
Therefore, the greatest magnitude for acceleration occurs when a (s) is a minimum. 

The simplest ideal planet is a single nonzero dense onion layer, or a soap bubble. A soap bubble model Let S be a spherical shell of mass M with constant density, 
center 0 = (0 , 0, 0) and radius r. Then the gravitational acceleration on the point P 
due to the shell S is 

a(s) = 
0,  ifO S s < r, 

GM 
2s2 ' 
GM 

2 ' s 

if s = r, 
if s > r. 

A spherical shell 

(2) 

The derivation of (2) is probably in every classical mechanics text, such as Fowles and 
Cassiday [5, pp. 207-209].  For completeness and because the derivation herein is a 
bit simpler than the ones in the mechanics texts surveyed by this author, we derive (2) 
by integrating (1) over the shell S. Let r = (r cos e sin¢ , r sine sin¢ , r cos¢) be a 
parameterization of S, where 0 s e s 2:rr and 0 s ¢ s :rr. Then the area element for S 
is II�� x ��II de d¢, which simplifies to r2 sin¢ de d¢. Since surface area of a sphere 

of radius r is 4:rrr2, the point-mass m of (1) can be taken as 4M 2r2 sin¢ de d¢ = nr 
:;, sin¢ de d¢. Therefore from (1), acceleration a(s) by S on point P is 

1
rr 
12rr G:;, (r cos¢- s) sin¢ 1

rr G!;}(r cos¢- s) sin¢ 
a(s) = 3 ded¢ = 3d¢. 

o o (r2+s2-2rs cos¢)2 o (r2+s2-2rs cos¢)2 

The change of variable u = cos¢ gives 

GM1' ru-s a(s) = -- 3 du, 2 -I (r2+s2-2rsu)2 

which, via integration by parts and simplifying, gives 

a(s) = -�;-, (;;, �',
)
'--Jr=[

r
=:=

s
=
s)
=,) 

(3) 

(4) 

(5) 

lfO < s < r then (5) gives 0 ;  if s > r then (5) gives -GMjs2. To obtain the anoma
lous result for s = r ,  first simplify ( 4) before integrating. 

Since a general ideal planet is simply a series of concentric soap bubbles, when 
s exceeds R, (2) is the familiar principle that when dealing with forces exerted by 
heavenly bodies, one can treat their masses as being concentrated at their centers. 
Furthermore, when 0 S s < R, (2) is a well-known result of electrostatics, which has 
features in common with gravitation; that is, for a hollow, metal sphere carrying a 
surface charge, the electrical field within the sphere is 0. Similarly, for any void within 
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a charged metal object, the field is zero as well [4,  chapter 5 ] ,  which is not the case for 
the gravitational field within an arbitrary void of a planet. 

As a simple example showing that neither of these two properties necessarily holds 
if a heavenly body is not an ideal planet, let S be a hollow, right circular cylinder 
with mass M, height 2, radius 1 ,  center at the origin, and central axis aligned with the 
z-axis. Since the surface area of S is 6rr, assume that S has uniform density of M j6rr. 
To calculate the gravitational acceleration induced by S at the point (0 , 0 ,  s )  where 
s 2: 0, use ( 1 )  and integrate over the top, the bottom, and the sides of S, giving a (s )  as 

GM ( [' {2" ( 1 - s)r de dr - {
I {2" ( 1  + s)r 

3 de dr 6rr lo lo (r2 + ( 1 - s )2)i Jo lo (r2 + ( 1  + s )2)z 

11 1 2" (z _ s )  ) + 3 de dz , 
-1 o ( l + (z - s)2)2 

which simplifies to 

a (s )  = 
GM ( s + 2  s - 2  ) -3- j 1 + ( 1  + s )2 

+ 
j 1 + ( 1 - s )2 ' 

GM(3 -2vts) 
15 

-- + - 2  
GM ( s + 2  s - 2  ) 
3 J l + ( l + s)2 J l + ( l - s) 2 ' 

if 0 ::: s < 1 ' 

if s = 1 ,  
if s > 1 .  

Observe that for 0 < s < 1 ,  a (s )  > 0, which means that if a particle is on the z-axis 
between 0 and 1 ,  then it is attracted towards the top of the cylinder. To see that this 
formula conforms asymptotically to an inverse square law, observe that lims---+oo s2a (s )  
i s  a constant. 

In general, when calculating the gravitational acceleration induced by a heavenly 
body at a certain point, any nonspherical symmetry of the body promulgates night
marish integrals .  But fortunately for astrophysics, planets and stars are more or less 
ideal planets; furthermore, many of the central problems of celestial mechanics in
volve forces of gravitation at many radii from the heavenly bodies in question, so that 
the inverse square law can be used with confidence and relief. 

To find the cumulative gravitational acceleration induced by the point-masses of a 
nontrivial ideal planet, it is convenient to sum them layer by collective spherical layer. 
With this idea in mind, we integrate (2) appropriately to find a (s ) .  

The general density model Let S be a ball of radius R, mass M, and center 0 
whose density at s units from 0 is given by 8 (s ) .  That is, S is spherically symmetric 
with respect to its density. Then { 4rrG 1s 

- -2- p28 (p) dp , 
a (s )  = s o 

GM --;z, 

if 0 ::: s ::: R, 

if s 2: R. 

An ideal planet with general density 

(6) 

To derive (6) from (2) note that the mass of the shell at radius p is 4rrp28(p). 
Therefore, 
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a (s )  = 
{ 1s 4Grrp28 (p) 
- 2 dp , 

0 s 1 R 4Grrp28(p) 
- dp o s2 

3 3 9  

ifO _::: s _::: R, 

if s � R, 

which simplifies to (6), since foR 4rrp28(p) dp = M. Furthermore, note that the two 
formulas of (6) agree at s = R. 

Constant acceleration:  an o l d  impl i c i t  model 

When reading of mythical heroes venturing off into the underworld, such as Orpheus 
seeking to reclaim his lost love or Hercules throttling Cerberus, the watchdog of Hades 
with three heads, one forms the impression that no matter how deep the heroes descend 
into the Earth, gravity remains constant. To catch a bit of the flavor of these tales, here's 
a snippet of Ovid's Metamorphoses [11 , Book X], describing Orpheus and his wife's 
ascent from Hades: 

Now thro' the noiseless throng their way they bend, 
And both with pain the rugged road ascend; 
Dark was the path, and difficult, and steep, 
And thick with vapours from the smoaky deep. 

The drawings in FIGURE 3, based on two old Grecian urns, show these two heroes 
in Hades; Orpheus is serenading the lords of the underworld and Hercules is about to 
chain Cerberus, depicted with only two heads . Turner [15] enumerates other literary 
characters who frequented the underworld. 

Figure 3 Hercules and Orpheus in Hades (renditions by jason Challas) 

Such an impression is especially vivid when reading Dante (in The Divine Comedy 
written about 1300 C.E.), who journeys with his ghost guide Virgil from the Earth's 
surface, down through 24 levels of Hell, down through the very center of the Earth. 
FIGURE 4 [2, p. 84] shows one artist's rendition of Dante's model of the Earth. When 
Dante scrambles over a broken bridge deep within Hell it is with the same effort he 
would have used along a road to Rome. Arrows and other projectiles lofted in Hell 
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Figure 4 Leve ls  i n  Dante's Earth 

appear to follow the same trajectories as at the surface of the Earth. When he clam
bers about the hip of a somewhat immobilized, gargantuan, and hair-covered Satan at 
the literal center of the Earth on his way to the antipodes, Dante changes directions, 
maneuvering with a degree of exertion akin to that of reversing one's bodily position 
while clinging to a root-covered, vertical rockface in the Apennines. 

And when we had come to where the huge thigh-bone 
Rides in its socket at the haunch's swell, 
My guide, with labour and great exertion, 

Turned head to where his feet had been, and fell 
To hoisting himself up upon the hair, 
So that I thought us mounting back to Hell. 

Canto xxxiv, lines 76-81 [2 , p. 287] 

Up and down reverse dramatically. Dante's Satan, more precisely, Satan's crotch, 
is thus a veritable singularity. After climbing on a bit more, Dante takes a rest, looks 
back, and sees Lucifer's legs sticking up. 

And if I stood dumbfounded and aghast, 
Let those thick-witted gentry judge and say, 
Who do not see what point it was I'd passed. 

Canto xxxiv, lines 91-93 [2 , p. 287] 

Dante may have borrowed a similar image from the prolific, first-century writer, 
Plutarch, who mentions this same singularity, although less graphically so, conjectur
ing 

if a man should so coalesce with the earth that its centre is at his navel, the 
same person at the same time has his head up and his feet up too. [12 , p. 67] 
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Such literary evidence suggests that the implicit density model o f  the Earth used in 
these imaginings is that density function 8 (s) which generates a constant gravitational 
acceleration. For 0 < s < R, such a density function satisfies 

4rrG 1• 
- -2- p28 (p) dp = C, 

s 0 

where C is some constant. Multiplying the above equation by s 2 and then differentiat
ing, and simplifying yields 8 (s )  = kjs, where k is some constant. That is, the ancient 
model of the Earth appears to be one wherein density and distance from the Earth's 
center vary inversely! Note that even in such a model, where the density at the center 
is unbounded, the mass of the Earth is yet finite. 

A common-notion constant dens i ty model 

Insisting that gravity remain constant on descent into the Earth requires a singularity 
in its density. Much simpler and more natural is to take this density as constant. In 
this author's informal survey of colleagues both in mathematics and physics, their 
almost universal and emphatic answer, "Gravity decreases with descent!," subsumes 
this model. Perhaps one of the reasons for such ardent responses from physicists and 
mathematicians is that almost all of us in our undergraduate differential equation days 
solved an exercise very much like this one, (which we solve in general at the end of 
this paper): 

Inside the earth, the force of gravity is proportional to the distance from the 
center. If a hole is drilled through the earth from pole to pole, and a rock is 
dropped in the hole, with what velocity will it reach the center? [13, p. 24] 

A tempting reason to guess that gravity wanes with depth is the following, incor
rect, intuitive argument: "As we go down, the portion of the Earth above will exert an 
upward force on us, hence lessening the downward force on us exerted by the remain
der of the Earth." But as (2) makes abundantly clear, at s units from the center, only 
the mass within s units of the center determines a (s) .  

Taking a ball S of uniform density 8 , mass M, and radius R, gives by way of (6), 

a (s )  = 
{ 4rrG8s . ---3-, tfO:::: s:::: R, 

GM . --2- 1f s � R. 
s 

A planet of constant density 

(7) 

That is, gravity and distance from the center are directly proportional up to the surface 
of the Earth. See FIGURE Sa. 

The reader may enjoy contrasting (7) with the acceleration functions of nonideal 
planets of constant density. For example, letS be a right circular cylinder of radius 1 ,  
height 2 ,  mass M,  center at the origin, and central axis aligned with the z-axis. In
tegrating ( 1 )  over S using cylindrical coordinates gives the gravitational acceleration 
a (s )  induced by S at the point (0, 0, s) for s � 0 as 

a (s )  = MG (J 1 + ( 1  + s)2 - J 1 + ( 1 - s)2 + 1 1 - s l - 1 1 + s l) , 
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a. Constant density 

a(s) 

a(s) 

R 

c. Two-tier Earth r R 

e. Two-tier core, Linear Mantle 

R 

a(s) 

a(s) 

a( s) 

a(s) 
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b. Hollow Earth 
R 

d. Homogeneous Core, 

Linear Mantle r R 

f. A gaseous planet 

Figure 5 Simple earth models (R = radius of Earth) 

whose graph qualitatively looks much like FIGURE 5a. This particular application in

jects life into the surprising, but otherwise artificial limit limHoo .J 1 + (1 + x )2 -
.J l  + (1-x)2 = 2 .  

Halley's hollow Earth model 

Edmond Halley, the "Father of Geophysics" and the financier behind Newton's publi
cation of the Principia, viewed Newton's (erroneous) calculation in 1687 of the rela
tive densities of the Earth and the Moon being 5 to 9, as one of the more significant 
of the discoveries presented in the Principia. Believing Newton to be correct and yet 
wanting to conclude that solid chunks of the Earth and Moon should be equally dense, 
Halley proposed that the Earth must be 4/9 hollow. Since his study of magnetic com
pass variations suggested that the Earth had four separate north poles, he went on to 
claim that the Earth's outer shell was 500 miles thick; inside were three more concen
tric shells, being the radii of Venus, Mars, and Mercury. FIGURE 6 shows Halley in a 
1736 portrait, holding his hollow Earth sketch. Furthermore, just as the aurora borealis 
phenomenon illuminates the northern skies, he postulated that the atmospheres over 
each of these shells were alive with magnetic lightning-like flashes; and he went on to 
speculate that life existed on these inner surfaces [7, 8] . 

Such musings prompted inane and romantic science fiction tales in years to come. 
One spurious legacy of Newton's error is a Hollow Earth Society, which apparently 
loves to speak of UFOs and superior creatures haunting the inner circles of our planet. 
On their web page [ 14] , you may view a purported map of this inner world, shown in an 
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artist's rendition on the cover of this issue. A well-known science fiction tale inspired 
by Halley's model is by Tarzan's creator, Edgar Rice Burroughs; in At the Earth's Core, 
written in 1908, two heroes within an out-of-control tunneling machine burrow from 
the surface of the earth, and emerge three days later and 500 miles down in the inner 
world of Pellucidar. The MAGAZINE cover also portrays one charming depiction of 
this earth ship, looking not too distantly different from the great earth-eating machines 
that tunneled out the Chunnel under the English Channel. At the halfway point, 250 
miles deep, up and down switch for Burroughs in the same manner as when Dante 
climbed down Satan's torso at the center of the Earth. But is such a scenario possible, 
walking upright on the inside of the Earth's outer layer? 

That is, let S be a shell of inner radius r and outer radius R, uniform density o, 
mass M, then (6) gives, 

a (s )  = 
0, 

--JrGo s - -4 ( r3 ) 3 s2 ' 
GM 

ifO � s � r 

if r � s � R, 

if s � R. 

A planet with a hollow core 

(8) 

FIGURE 5b illustrates this acceleration. Note that the entire empty core is a zero
gravity haven! 

But on Pellucidar, worse than having zero gravity on the surface, or a marginal 
attraction due to the spin of the Earth, the situation is grim, for its sky is illuminated by 
both a moon and a central sun, so any object not clinging to the surface of Pellucidar 
would fall into this sun. Lest we be overly critical of Burroughs's model, he does 
have his character sense "a certain airy lightness of step" on Pellucidar [1, Freedom 
chapter], and explains, "The force of gravity is less upon ... the inner world ... due 
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. . . to the counter-attraction of that portion of the earth .. .  directly opposite the spot 
. . .  at which one's calculations are . . .  made," which is probably a good rendition of 
how the typical man-in-the-street might reason. 

Hooke's oni on model 

Robert Hooke is credited with positing an Earth of multiple layers, one reason for 
which was to explain why the magnetic north pole appears to wander. His idea was 
that the magnetic source might be embedded in a separate layer, which rotated at a 
rate slightly different than the surface layer. As a simple representative example of 
this model, suppose that the Earth consists of two homogeneous layers, the inner one 
called the core and the outer one called the mantle, a term coined by E. Wiechert in 
1897. LetS be a ball consisting of an inner core of density 81> mass M1, radius r ,  and 
of an outer mantle, density 82, mass M2, inner radius r and outer radius R, then two 
applications of (6) yield 

a (s )  = 
4rrG81s 

3 
-GM, - �rrG82 (s -

r3 ) , s2 3 s2 
G(M, + M2) 

s2 

ifO:::: s :::: r, 

if r :::=: s :::=: R 

if s � R . 

An onion model with two layers 

(9) 

In this case, the mantle contains a local extremum for gravitational acceleration at 
sc = r�2(81- 82)/82, provided r < sc < R, which means that a necessary condition 
for the existence of a local extremum is for 82/81 < 2/3. That is, a planet's mantle 
must be no more than 2/3 as dense as its core in order for an extreme to exist. See 
FIGURE 5c where 81 = 282 and R = 2r . 
A mo lten core, var iable dens ity mantle model 

To account for volcanic activity, geophysicists of the nineteenth century postulated that 
the Earth's central region was molten, a thick pea soup of convective rock currents, 
which in tum suggested that the core might be homogeneous. Being solid, the mantle 
was presumed to have a density that increased with depth. As a simple representative 
member of this model, let S be an ideal planet with a homogeneous core of density 8, 
mass MI. radius r ,  and a variable mantle of density 8 (s) = tt + ).s , where r < s < R, 
mass M2, and where f.L and). are constants. Then 

ifO:::: s < r, 

a (s )  = if r _::::: s :::: R ,  (10) 

if s � R .  

Homogeneous core with mantle of variable density 
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FIGURE 5d shows the case when 8 = 1, JL = 2, A = -1, r = .82, and R = 1.2. Note 
that for these values, there are two local extrema within the mantle, the reason being 
that solving the equation a' (s) = 0 for r < s < R involves finding the roots of a quar
tic polynomial. Nevertheless, it is a bit surprising that a (s) can display such exotic 
behavior when 8 (s) is so tamely monotonic. 

A sei smic  model 

From earthquake analysis and from the understanding that seismic waves are trans
mitted differently in liquids versus solids, today's thinking suggests that our Earth 
consists essentially of three layers. We'll simplify matters, and assume that it consists 
of a solid central core of uniform density 81 = 13 units (where a unit is 1000 kg/m3),  
radius 1275 km; a liquid outer core of uniform density 82 = 10, thickness 2225 km; 
and an affinely dense mantle of thickness 2900 km, with density varying from 6 to 3.3 
at the surface. We ignore the thin crust and tenuous atmosphere. Let r1 = 1.275 units 
(where a unit is 1000 km), r2 = 3.5, and R = 6.4; let M1, M2 , and M3 be the masses 
of the inner core, the outer core, and the mantle respectively. Then within the mantle, 
8 (s) = JL + As::::::: 9 .26- 0.931s, where s is in thousands of km, and 

a(s) = 

4 --nG8,s 3 ' 

-
GM, 

- �nG82 (s-
rf ) s2 3 s2 ' 

G (M, + M2) 4 ( 2 ri ri ) - - -nG J-tS + 0.15A.s - J-t-- 0.75>..- , s2 3 s2 s2 

G (M, + M2 + M3) 

s2 

Solid center, molten outer core, variable mantle 

ifO::::: s < r,, 

if s � R.  

(11) 

FIGURE 5e gives a graph of a (s). Note that the Earth has no local extremum within 
the outer core because 82/81 = 10/13 > 2/3, a violation of the necessary condition 
given in Hooke's model. The overall extreme value of gravitational acceleration for 
this model of the Earth is approximately -10.2 mjs2 at the juncture between the outer 
core and the mantle. In retrospect, the graph of FIGURE 5e also supports the intuition 
of those who spun the Greek legends, for Hades could not have been more than 1000 
km below Greece; and the acceleration of gravity within this level of the Earth is 
approximately constant! 

Studies from 1989 on the interplay between data and models give a density model 
as in FIGURE 7, which in tum gives an acceleration curve qualitatively much like 
FIGURE 5e; the current best guess of gravity's extreme within the Earth is -10.8 m/s2 

at the core-mantle boundary [9, p. 155]. 

A gaseou s  model 

To complete a list of simple planetary models, imagine a gas ball of uniform temper
ature and uniform composition; the density of such a ball is exponential [17, p. 68], 
that is, 8 (s) = 80e-ks , where 80 is the density at the center and k is a positive constant. 
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Figure 7 Earth's dens ity 

To be faithful to the definition of an ideal planet, we say that R = oo. Then by (6) for 
positive s, 

e-ks (k2s2 + 2ks + 2)- 2 
a (s) = -4JTG80 3 2 k s 

Gaseous model 

(12) 

See FIGURE 5f. The extreme for gravity occurs at sc ::::::: 1.45123/ k, at which point the 
mass of the ball of radius sc is 4.5080/ k3• (Over 98% of the mass is contained within 
a ball of radius 3sc .) More realistic density models for gas balls are complex and lead 
to elaborately grand models for the stars. 

Conc l u d ing remarks 

As we have seen, given the global density function for an ideal planet, integration 
tells us how gravity changes with descent. However, even without knowing the global 
density function, we can determine whether gravity increases or decreases with descent 
from a planet's surface; all that is needed is the mean density of the planet and its 
surface density. Surface density of the Earth is easy enough to compute-just measure 
some representative surface rock. But in Euler's day determining the mean density of 
the Earth was not yet possible; the product G M was known, but not its component 
parts; it was not until 1798, fifteen years after Euler's death, that Henry Cavendish 
experimentally determined G, which then gave the scientific community M and the 
mean density of the Earth. The following theorem, foreshadowed by the watershed 
2/3 ratio for extrema in the simple Hooke model, shows how local density data can 
answer the question of how gravity changes with descent. Let planet P have radius R 
and density 8 (s ) , 0:::: s :::: R .  Let m (s) be the mass of P up to radial distance s; that is, 

m (s) = 4JT J; p28 (p) dp . Define the mean density 8 (s )  of P at s as m(s) divided by 
the volume of a sphere of radius s; that is, 

3 1s 
8 (s )  = 3 p28 (p) dp . 

s 0 
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Define the normalized density � (s )  at s as �(s) = 8 (s )/8 (s) .  For example, if 8 (s) is 
constant, then P's normalized density is �(s) = 1. If as in the constant acceleration 
model 8 (s) = k/s , where k is some constant, then the normalized density of P is 
�(s) = 2/3 . 

THEOREM: THE CRITICAL CONDITION . If a (s) is differentiable, then gravity in
tensifies with descent at s whenever � (s) < 2/3 and wanes with descent at s whenever 
� (s) > 2/3. If� (s ) = 2/3, gravity remains constant with descent at s .  

To verify this condition, note that (6) for 0 ::: s ::: R can be written as 

By the fundamental theorem of calculus, 

which means that 

, 2a (s) 
a (s) = -4;rrG8 (s) - -- . 

s 
(13) 

Note thata (s) intensifies with descent precisely when a' (s ) > 0; that is, recall thata (s) 
is negative, so that the phrase "intensifying with descent" translates into the phrase "a 
is increasing at s ."This condition is equivalent, via (6) and (13) , to 

-4;rrG is --2- p28 (p) dp = a (s) < -2;rrGs8 (s ) ,  
s 0 

which is equivalent to �(s) < 2/3 . Similarly, the alternate conditions follow. 

For our Earth, since its mean density 8 (R) is about 5515 kgjm3 and since crustal 
rock density 8 (R) is about 2800 kgjm

3
, then �(R) � 0.51 < 2/3 . So by the theorem, 

gravity intensifies with descent from the Earth's surface. If the several thousand Moon 
rock specimens brought back to Earth are accurate indicators, the surface density of 
the Moon is comparable to that of Earth; since the Moon's mean density is about 
3330 kg/m3, then �(R) � 0.84 > 2/3, where R is the Moon's radius, which means 
that gravity weakens with descent from the Moon's surface. 

As promised, we now solve the generalized problem of falling through a hole in the 
Earth: 

If a hole is drilled through the Earth from pole to pole, and a rock is dropped in 
the hole, with what velocity will it reach the center, and how long will it take? 

Plutarch posed a version of this problem when he has a debater catalog various reasons 
as to why some folks chose not to believe in a spherical Earth [12, p. 65]: 

Not that . . . masses . . .  falling through the . . . earth stop when they arrive at 
the centre, though nothing encounter or support them; and, if in their downward 
motion the impetus should carry them past the centre, they swing back again and 
return of themselves? 

Euler played with this problem as well, explaining in his popular letters to a German 
princess [3, p. 178] that 
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You will remember how Voltaire used to laugh a t  the idea of a hole reaching 
to the centre of the earth, . . . but there is no harm in supposing it, in order to 
discover what would be the end result. 

To solve this problem, we neglect air resistance and any relativistic concerns. Let s ,  
v ,  a , and t be  the distance of the rock from the Earth's center, the velocity of the rock, 
the acceleration of the rock, and time, respectively, where at t = 0, s = R, v = 0, and 
a = -g, where R is the radius of the Earth and g � 9. 8 m/ s2 . Note that acceleration 
times velocity can be written two ways as 

dv ds v- = a-.  dt dt 

Integrating this expression as time t goes from 0 to -r gives 

v-dt = a- dt. 
1' dv 1' ds 
0 dt 0 dt 

Since both s and v are monotonic functions in terms of t as the rock falls from the 
Earth's surface to its center and since the initial velocity of the rock is 0, then the 
above equation simplifies to 

v 2 (s ) 1s 
-- = a dr 

2 R ' 
where v is a function in terms of s ,  and r is a dummy variable representing distance 
from the Earth's center. Since the rock's velocity during fall is negative, 

( 14) 

Thus the speed of the rock as it passes through the Earth's center is v (O km). To find 
a formula for the time T it takes for the rock to reach the center, obtain a uniform 
partition of the interval [0, R]: 0 = s0 < s 1 < · · · < sn = R, so that !:J.s = Rjn ,  for 
each positive integer n .  Approximate the time for the rock to fall from si+1 to si by 
-!:J.sjv i ,  where vi = v (sJ for each i ,  0 :::: i :::: n - 1 .  The approximate value of time 
T is therefore I:7,:-� -!:J.s I v i. That is, 

T = 
{R =-!_ ds . lo v 

( 1 5) 

Case 1. The homogeneous Earth model By (7) , a (s) = ks , for 0 :::: s :::: R, where 
k is a constant. Since a (R) = -g, then k = -g/ R .  Therefore by Equation ( 14) 

v (s) = - 2 ( ' 
-g

r dr = -J!!_ (R2 - s2) .  }R R R 

Thus v (O) = -..fiR � -7.9 kmjs. By Equation ( 1 5) ,  1R 1 1RH 1 rrH T = -ds = - ds = - - � 2 1 . 2 minutes . o -v  o g JR2 - s2 2 g 



VOL.  75, NO. 5, DECEM B E R  2 002 

Case 2. The constant acceleration model If a (s) = -g for 0 ::::: s ::::: R then 

*) = -/2 f -g dr = -/2g (R - , ), 

349 

so that v (O) = -,JliR � -11.2 km/s (which also happens to be the escape velocity 
of the Earth from its surface), and 

1 R 1 1 H T = n:: � ds = ./2 - � 19 .0  minutes. 
o ..,; 2g R - s g 

Case 3. An extreme black hole model We now assume all of the Earth's mass is 
concentrated at its center, so that a (s) = kjs2 by Newton's law of gravitation, for 0 < 
s < R and where k is some constant. As before, since a (R) = -g, then k = -gR2 . 
Thus 

( ' gR2 ! ( R ) v (s ) = - 2 JR 
-

r2 
dr = - 2gR �- 1, 

so that v (O) = -oo. Note that v ( l  em) is just shy of the speed of light. The time it takes 
for the rock to reach the Earth's center, barring relativistic considerations, is therefore 

1 R 1 r;;s 
T{ H T = PJ::D - - ds = r;;; - � 15 .0  minutes. 

o v 2g R R - s 2-v 2 g 

To see that no other ideal planet model either yields a faster falling speed or a less 
fall time, observe that the fastest falling speed in least time will surely occur if the 
acceleration on the rock is always as extreme as is possible, which certainly happens 
if all the mass of the Earth is always nearer to the center of the Earth than is the rock. 
Contrariwise the slowest falling speed and the greatest falling time occur when all the 
mass is on a shell of radius R, in which case the rock is stationary. 

Case 4. Our Earth Using (11), (14), and (15) ,  and wading through all the approxi
mating integrals gives a speed of v (O) � -9.8  km/s and a time of T �  19 .2  minutes. 
Modifying the density function to mirror the data of FIGURE 7 or whatever new data 
geophysicists generate in years to come should produce more accurate acceleration 
functions, which in turn will influence these values of v (O) and T slightly. 

Lucifer cast down We close with a problem, the details of which the reader may 
enjoy completing. In John Milton's Paradise Lost, published in 1 667, Satan is cast 
from Heaven and falls for nine days before landing in Hell . 

Him (Satan) the Almighty Power 
Hurled headlong flaming from th ' ethereal sky, 
With hideous ruin and combustion, down 
To bottomless perdition . . .  

Book I, Lines 44--47, [10, p. 9] . 

Although Milton used a Ptolemaic model of the universe, it is a fun exercise to 
recast this problem as dropping a rock through a galaxy. We shall allow this rock to 
follow the dynamics of ( 14) and ( 1 5) no matter how large v becomes, since conceivably 
Satan's speed shouldn' t  be constrained by that of light. Let's take the galaxy as the 
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Milky Way, which has a mass M of about 3 x 1 041 kg, and whose radius R i s  about 
9 .3 x 1 020 meters. For the sake of simplicity, assume as a first approximating model 
that the Milky Way is a flat, homogeneous pancake, which is positioned on the x-y 
plane with its center at the origin. Assume that the rock falls from rest at (0, 0, R). 
Integrating ( 1 )  over the Milky Way via polar coordinates gives 

GM 1R1zn -rs 2GM ( s ) a (s ) = - dOdr = -- - 1 . 
7r R2 o o (r2 + s2) � R2 J R2 + sZ 

By ( 14) , 

v (s )  = -
2,JGM J JR2 + s2 - s + R( l - .J2). 

R 
Note that v (O) is approximately 225 kmjs.  By ( 1 5), the rock will reach the center of 
the Milky Way in about 340 million years ; light would make this journey in about one 
hundred thousand years . Since the episode of Satan being hurled out of Heaven took 
place when the galaxy was in chaos, possibly before the Big Bang, the reader may 
wish to toy with the pancake model and the rock's initial velocity, so as to estimate the 
Miltonian distance between Heaven and Hell. 
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Software for computer graphics represents three-dimensional space a little differently 
than one might expect. Euclidean geometry is not quite right. The usual approach 
uses what is called projective geometry, certainly one of the most beautiful systems in 
mathematics . Yet even with this approach, when the mathematics actually meets the 
computer code there are some awkward inconveniences. Perhaps the best solution may 
be what is called oriented projective geometry. This geometry was worked out in detail 
by Jorge Stolfi [10, 11] in 1987;  it has also found more recent application in computer 
vision [6]. This paper is an elementary introduction to this still unfamiliar geometry 
from a coordinate-based point of view, restricted to three dimensions. It assumes only 
a background in linear algebra. 

For the reader who knows of classical projective geometry and homogeneous co
ordinates, it is best to set this knowledge aside and examine whether the oriented ap
proach works on its own terms. At the end of the paper we compare and contrast it with 
the classical approach. Also, readers conversant with wedge products, Plucker coordi
nates, and the Hodge operator may be pleased to see them appear in such a concrete 
setting. 

To infinity ... 

You are driving a virtual car in a computer game. Look out through the windshield. 
The trees that line the highway are rushing past you. They are nicely displayed in 
perspective: they begin far away as dots, but they grow taller as you race toward them. 
Next, look ahead at the horizon. You see the sun. Unlike the trees, the sun never gets 
closer to you. Still, it is certainly subject to some transformations: you turn your car 
left, and the sun veers right. 

The trees and the sun need to be represented inside the program somehow. Ulti
mately, this depends on attaching parts of them to points in a virtual space. One might 
think at first that a useful way to represent any point would be to use Cartesian coor
dinates,  a triple (x , y, z) of real numbers. Taking your car to be located at the origin, 
a tree might be centered at, say, ( -20.42, 10 .63 ,  -94.37) . Where is the sun? It is very 
far away, perhaps at (9 .34 x 109, 2 .7 1 x 109, - 1 .23 x 101 1 ) .  But there is something 
strange about these large numbers . It seems pointless to waste time (and numerical 
precision) decrementing such big numbers by a few tens as our car drives on toward 
the sunset. We would like to simplify things by somehow locating the sun at infinity. 

One uniform way to represent both ordinary points and points at infinity is to use 
four numbers instead of three. Here's  how it works . Take the point (2, 3, 4) . Instead 
of representing it as a column vector in JR3 , we tack a 1 on the end and represent it as 
a column vector in JR4 : x = [2 3 4 1 ]T. This representation is not meant to be unique: 
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we can multiply this column vector by any positive number and we will say i t  repre
sents the same point. (The adjective positive is crucial here.)  For example, the vectors 
[2 3 4 1 ]T , [20 30 40 lO]T , and [0 .2 0 .3 0.4 0 . 1 ]T all represent the point (2, 3 ,  4) . No
tice the fourth coordinate will always be positive. 

Going in the other direction, to get the 3D coordinates of the point represented by 
the column vector v = [v1 v2 v3 v4 ]T with v4 > 0, we just multiply by ( l j v4) .  This puts 
a 1 in the fourth slot, and we can extract the first three components as the coordinates 
of our point. This process takes a vector v and yields the point 

( 1 )  

(The square brackets are meant to suggest that points are equivalence classes of vec
tors. )  The convention we will use is that bold lowercase letters denote vectors in �4• 
while bold italic lowercase letters denote points in three-dimensional space. Exactly 
what kind of space this is has yet to be determined. 

Now consider the sequence of collinear points 

(0 .2 ,  0 .3 ,  0.4) , (2, 3 ,  4) , (20, 30, 40) , (200, 300, 400) , . . .  

which moves outward from the origin through (2 , 3 ,  4) and continues on . . .  forever. 
Here is one nice way our scheme can represent this sequence using vectors in �4: 

[� ].[!].[! ].[ ! ]·····[�]· 
10 1 0 . 1 0 .01 0 

(2) 

But here we have appended a limit point, one that is naturally suggested by this four
dimensional representation. Where is it located in space? Since v4 = 0 we cannot use 
( 1 ) to give it (x , y, z) coordinates. In fact it is natural to say that the point is at infinity 
in the direction outward from the origin past (2, 3 ,  4) . We say it lies on the celestial 
sphere, a spherical dome enclosing our Euclidean space at infinite distance. 

Because points at infinity in some sense denote directions, let us introduce a bit 
of notation: we will write (x , y, z) t for the point at infinity represented by [x y z O]T , 
where at least one of x ,  y, and z is nonzero. Our rule that one can multiply a vector by 
any positive constant and still have a representation of the same point is still in effect; 
for example, the vectors [20 30 40 O]T and [200 300 400 O]T both represent the same 
point (2, 3 ,  4)t on the celestial sphere. 

The celestial sphere is indeed a sphere, and we can distinguish antipodal points, 
that is, points on the opposite side of the origin. We can arrive at the point antipodal to 
(2, 3 ,  4)t on the celestial sphere by the sequence 

(-2, -3 ,  -4) , (-20, -30, -40) , (-200, - 300, -400) , . . . ' (-2 , -3 ,  -4)t 

which, in one vector representation, is 

[=�] ' [=!] ' [ =! ] ' ... ' [=�J . 
1 0. 1 0.0 1  0 

If p is the limit point in (2) , then this limit point should certainly be denoted -p. These 
two antipodal points on the celestial sphere are (needless to say?) different. 



VOL.  75 ,  NO. 5, D ECEMBER 2 002 35 3 

... And beyond? 

We now have seen how to use vectors in �4 to represent points in Euclidean space as 
well as points at infinity in all directions . But, for better or worse, there' s  more. 

We have been moving in a straight line by fixing the first three coordinates of a vec
tor in �4 and varying the fourth. Let's continue moving along the direction of sequence 
(2) and see where it leads. We hit the celestial sphere at [2 3 4 O]T and keep on going: 

... [!].[ ! ]·[ � ]·[ �]· 
0 -0.01 -0. 1 - 1  

(3) 

Let's stop at this place for a moment. Where are we now? The vector v = 
[2 3 4 - 1  ]T does not represent the point (2, 3 ,  4) ,  since our vector representation 
only allows us to multiply by positive numbers, and we cannot thereby change the 
fourth coordinate to + 1 .  Neither does it represent the point ( -2, -3 ,  -4) , for the 
same reason. So our �4 representation seems to imply the existence of a whole new, 
distinct Euclidean space of points with negative numbers in the fourth coordinate of 
their vector representations .  As before we can normalize such vectors by multiplying 
by positive numbers to ensure v4 = - 1 ,  but we can never get rid of the negative sign. 

We will call this duplicate Euclidean space invisible space; its points are represented 
by vectors in �4 with v4 < 0. The Euclidean space where we began will be known as 
visible space; vectors representing its points have v4 > 0. These names are chosen to 
evoke their roles in graphics and computer vision, roles that we will discover later. As 
far as the mathematics is concerned, it is important only to realize that there are now 
two copies of Euclidean space and we need to give them different names to keep them 
straight. 

The point represented by v = [2 3 4 - 1 ]T and its positive multiples will be denoted 
by (-2,  -3 ,  -4)0 • To justify this sign change, let us review the journey shown in 
sequences (2) and (3) above. We have moved out of visible Euclidean space and hit 
the celestial sphere; we have kept going and crossed into invisible Euclidean space, 
heading toward its origin. We left visible space in the + + + octant; with this sign 
convention we enter invisible space in the - - - octant. If we kept going, we would 
cross the invisible origin and exit invisible space at the point antipodal to the place we 
entered. We thereupon would reenter visible space. This is depicted in FIGURE 1 .  

One might worry that when our interspatial tour neared the origin, if we had 
clamped v1, v2 , v3 constant and let v4 grow, then v4 would blow up. This is true. But 
sometime before we reach the origin, we clamp v4 constant and let v1, v2 , v3 start 
to shrink uniformly down to zero. For example, instead of [2 3 4 - 1  OOO]T we use 
[0.002 0 .003 0.004 - 1 ]T to represent (-0.002 -0.003 -0.004)0 •  Once we are 
safely past the origin, we can fix v1, v2 , v3 and let v4 vary again, so it can go zero in 
preparation for hitting the celestial sphere. This is called a change of coordinate chart 
in topology. It should be no more disturbing than changing maps on a road trip as you 
approach a state line. 

In all, our space is composed of three connected pieces with the following types of 
points : 

{k [x y z 1 ]T I k > 0} , representing a visible Euclidean point (x , y ,  z) 
{k [x y z O]T I k > 0} , representing a point on the celestial sphere (x , y ,  z)t 

{k [x y z - 1 ]T I k > 0} , representing an invisible Euclidean point (-x , -y ,  -zt 
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Figure 1 Visible ( /eft) and invisible (right) space share the same celestial sphere. 
U pon exiting the visible world by crossing the celestial sphere, we immediately en
ter the invisible world. Contin uing farther along, we exit at the antipodal point and 
re-enter the visible world. For concreteness, imagine p = (2 , 3 , 4) = ([2 3 4 1  n and 
r = (2 , 3 , 4) t = ([2 3 4 OJT] . Then (2 , 3 , 4)0 = ([ -2 -3 -4 - 1 n, which we will call -.p, 
and -r = [ l-2 -3 -4 0JT] = (-2 ,  -3 , -4) t . 

If p = [ v] , we may define -.p = [-v] . This is different from the geometric opposite 
-p of a point p, which would be represented by [-x - y -z k ]T if p is represented by 
[x y z k]T . Note that we have the properties 

-.-.p = p and -.-p = - -.p. 

If (and only if) r is a point at infinity, then -.r = -r. We will call -.p the reverse of 
point p, anticipating the generalization of this operation to planes and lines in the next 
two sections. 

Wh ich s i de are you on ? 

At this point, we seem to have moved from science to science fiction. With only some 
vague motivation from computer graphics (that is, the usefulness of points at infin
ity), we have introduced a vastly redundant four-dimensional representation for three
dimensional space. Even stranger, we have let this representation drive us to include 
another (invisible!) universe just as big as the original one. The latter seems especially 
profligate. Why would one do such a thing? 

Well, all this geometric baggage is a consequence of our need to pay attention to 
signs. If we ignore the sign of the four-dimensional vectors that represent our points, 
we lose important information about orientation. Let us first see how this works in a 
simple case. 

Consider the problem of determining whether a point p is on, in front of, or behind 
a plane N. We specify the plane with the four numbers (n , d), with n = (n t .  n2 , n3) 
the components of a unit vector normal to N, and d its signed distance from the origin 
measured in the n direction. The vector n gives an orientation to the plane; we will 
say its front side faces out in the direction of n. The point p = (x , y, z) is on the 
plane exactly when n 1x  + n2y + n3z = d. Since p is represented by the column vector 
p = [x y z l ]T, it is convenient to represent N by the row vector nT = [n 1 n2 n3 -d]. 
Then we have a simple test: the point is on, in front of, or behind the plane if n T p = 0, 
n T p > 0 , or n T p < 0, respectively. Clearly, any positive multiple of n T will represent 
the same plane. 

If all we care about is incidence, that is, whether a point is on the plane or not, 
we can be completely indifferent to the overall sign of p (or of n): nTp = 0 when-
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ever n T ( -p) = 0. But if we want to distinguish the front and back sides of the plane 
we must pay attention to signs. Switching p to -p reverses the inequalities and thus 
reverses the answers to our front/back questions .  

The vector representation of planes enjoys a fascinating duality with the represen
tation of points . If nT = [n 1 n2 n3 -d] represents the plane N, the plane represented 
by -n T = [ -n 1 -n2 -n3 d] represents a plane occupying the same location but facing 
the opposite direction; call it -N, the reverse of N. The sign of the fourth coordinate 
of nT is positive if the plane is facing inward (toward the visible origin), and negative 
if it is facing outward (toward the invisible origin) .  Both N and -N cut through the 
celestial sphere and pass through both visible and invisible spaces .  If a point p is on 
plane N then N also meets -.p as the plane extends across invisible space. The rather 
exceptional looking row vectors, n T = [0 0 0 ± 1 ] ,  represent the (inward and outward) 
faces of the celestial sphere: their product with a vector p is zero if and only if p has a 
0 in its fourth coordinate, that is, if and only if p represents a point at infinity. 

Head-on col l i s ions  

Having described sign-conscious representations of  points and planes, we  should 
round things out by considering lines as well . When (directed) lines pierce (ori
ented) planes the direction of the encounter might matter in certain applications, so 
we pay attention to it here. We prove an exceptionally simple formula summarizing 
this encounter in all generality. This formula requires one preliminary definition: the 
wedge product of two vectors q, p E JR4 is defined as the 4 x 4 antisymmetric matrix 
q /\ p = qpT _ pqT. 

PROPOSITION. The line running from the point represented by p to the point rep
resented by q is represented by all positive multiples of the matrix L = q /\ p. A plane 
nT intersects the line at the point x = Ln, unless the line lies in the plane, in which 
case Ln = 0. 

From here on, "the point represented by positive multiples of the four-dimensional 
vector p" is shortened to "the point p"; similarly for planes and lines . An italic bold 
letter like p will still represent the point itself and, if the point is a visible Euclidean 
point, it will denote the triple (p � .  p2 , p3 )  considered as a vector in JR3 , admitting dot 
and cross products . 

The power of this proposition is that it works even when the line runs parallel to the 
plane: the intersection point will then lie on the celestial sphere. In fact, one or both 
of the two points, as well as the plane itself, could lie at infinity, and the formula still 
yields the correct answer. In addition, the visibility/invisibility of the intersection point 
x will give us information about the relative orientation of the line and plane. Finally, 
in the case where the line lies entirely in the plane the formula returns x = 0-a natural 
error code, as it were. 

Rather than proving this proposition from scratch, we build on results presented by 
Guggenheimer [ 4] in his survey of geometric formulas in lR 3 • We first use p and q to 
define two related vectors : h = q - p and m = p x q. Since h runs in the direction of 
the line from p to q, we call it the heading vector. The vector m is orthogonal to h, and 
indeed is perpendicular to the plane containing the line and the origin; it is called the 
moment vector. Taken together, these two vectors comprise six numbers called Pliicker 
coordinates of the line. Guggenheimer shows that the PlUcker coordinates completely 
characterize the line-though he ignores its direction. He then goes on to derive a 
formula for line-plane intersections: 
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LEMMA. Let h = q - p and m = p x q .  The plane [n -d]T intersects the line con
taining p and q if and only if h 0 n =I= 0; the point of intersection is given by 

X =  
(n X m) + dh 

h · n 

Readers of Guggenheimer's paper should note the plane whose coordinates he gives 
as (n , d) is the same as the one we denote by [n -d] (facing forward) or - [n -d] 
(facing backward) . Any positive multiple of [n -d] will describe the same plane, of 
course, but using the unit vector n will make the arguments below easier to follow, as 
d is then the distance from the origin to the plane measured along n 0 

To see that our proposition is an extension of this lemma, consider first the case 
where p and q represent visible Euclidean points : take p = [p l ]T and q = [q l ]T .  
L = q 1\ p i s  then 

The minus signs displayed below the diagonal are intended to reduce clutter, and 
indicate that this is an antisymmetric matrix (L = -LT), the ( i , j) entries below the 
diagonal being the negatives of their (j,  i )  counterparts above. 

If n T = [ n -d] then, writing the first three entries together as a vector, we have 

L -
[<m X n) - dh] 

n - -h 0 n ° 
(4) 

If the heading vector points in the opposite direction from the plane normal, then 
h · n < 0, so upon dividing by the positive fourth component we see that Ln represents 
the visible point X given by the formula in the lemma. On the other hand, if h 0 n > 0, 
the intersection point x has the same coordinates but lies in invisible space. What does 
this tell us? The x = Ln formula gives us only the point of head-on intersection, where 
the line and the plane are facing each other. If it happens that, in the visible universe, 
a line and a plane encounter each other in the same direction (the heading and the 
normal facing the same way, h · n > 0), their actual point of head-on intersection will 
lie in the invisible universe. See FIGURE 2, top . 

The cases where one of p or q is at infinity pose no special problems. For example, 
if we have p = [p l ]T and q = [q O]T, we get the same L = q 1\ p as if we had chosen 
the two points p and [p + q l ]T ,  which clearly determine the same line. Here the vector 
q serves as the heading vector. The case where the plane itself is the celestial sphere 
(n T = [0 0 0 - 1 ]  for the outward face, or n T = [0 0 0 1 ]  for the inward) tells us the line 
hits it head on at the point at infinity in direction -h or h, respectively, which is what 
we would expect. 

We tum now to the case where the line and the plane are parallel. In formula (4) we 
have h 0 n = 0, so the intersection point is claimed to be X = Ln = [ (m X n) - dh O]T 0 

This is a point at infinity, which is to be expected. But why these specific coordinates? 
There are two cases to consider. The line may run behind the plane, or in front of it. 
Our formula actually tells us which of these two alternatives occurs. To see this, we 
need to do some vector algebra. 

Let f denote the foot vector, which runs from the origin to the line along the short
est distance separating them; it is perpendicular to the heading h .  We can express 
points p and q as p =  f + A 1h and q = f + ).2h,  where ).2 > A 1 • Then m = p x q = 



L' 
Ln u � A U L'n 

L 
Figure 2 L i ne-p lane i ntersect ions .  The formu l a  x = Ln gives the poi nt where the d i rected 
l i ne L i ntersects the or iented p lane nT i n  a head-on fash ion .  U n l ess the l i ne l ies i n  the 
plane ( in which case Ln = 0), this col l i s ion wi l l  a lways happen at exact ly one poi nt. I t  
may be i n  v is ib le space (top left), i nv i s ib le  space (top right), or  on the celest ia l  sphere. 
The l atter wi l l  happen when the l i ne runs para l le l  to the p lane in Euc l i dean space. Th i s  
i s  depicted i n  t he  i l l ustrat ion a t  t he  bottom.  L i ntersects t he  p l ane  head on a t  t he  poi nt at 
i nfi n ity on the left; L' h its it at i nfi n ity on the r ight. The coord i n ates of these poi nts on the 
celest ia l  sphere a re [ -h O]T and [h O]T , respective ly, where h i s  the head ing  vector (the 
same for both l i nes shown) .  N ote that a l l  p lanes may be v iewed as spheres of i nf in ite 
d i ameter, just as l i nes a re c i rc les of i nfi n ite d i ameter. 

(),2 - 'A J )f X h, and SO (m X n) - dh = ('A2 - A I ) (/ X h) X n - dh = ('A2 - 'A J ) 
(fi · f - d)h, where we have used the identity (/ X h) X Tt = (/ · n)h - (h · n)f and 
the fact that h · n = 0. We see that our x = Ln formula tells us that the point on the 
celestial sphere where L intersects n T is _ [sign(n · f - d)h] X - 0 ' 

where we have taken the liberty of multiplying by the positive scalar [(A.2 - 'A J ) In · 

f - d W 1 • 
When n · f > d the line passes in front of the plane, and hits it head on at infinity 

in the direction h .  When n · f < d the line passes behind the plane, it hits it head on 
at infinity in the direction -h.  These are indeed the expected intersection points ; see 
FIGURE 2, bottom. If the line lies entirely in the plane, then n · f = d and we have 
x = 0, which represents no point. 

Finally, consider the case where both p and q are on the celestial sphere. The line 
from p through q is a great circle in the heavens. If we are sitting on the front face of 
the plane [n - d] looking up at this circle, the point of intersection is the where the 
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circle encounters our horizon head on. This should be given by the point at infinity in 
the direction m x ii .  Fortunately, substituting these quantities into x = Ln = (q 1\ p)n 
reveals that this is indeed the case. This completes our derivation of the Proposition 
from Guggenheimer's Lemma. 

If L = q 1\ p, then the line running in the opposite direction is p 1\ q = -L. This 
means that, analogously to points and planes, we can define the reverse of a line L 
represented by the matrix L as the line -.L represented by the matrix -L. 

The representation of L by q 1\ p has thus given us a very concise and general 
algorithm for detecting oriented line/plane intersections. There are other questions we 
can answer this way too. Guggenheimer [4] reminds us that a point y is on the line 
with heading h and moment m if and only if y x h = m .  Direct substitution shows that 
this amounts to checking that •Ly = 0, where we define 

This matrix results from L by simply swapping the positions of the heading and 
moment vectors . This is not some ad hoc shuffling of matrix entries, however. We 
are being quite systematic, using what is called the Hodge star operation, defined 
component-wise this way : 

1 
(•L)ij = - L L signature(i , j , k ,  l) (Lh1 , 

2 k I 

where signature(i , j, k ,  l) is defined as + 1 (resp. - 1 ) if ( i ,  j, k ,  l) is an even (resp. 
odd) permutation of ( 1 ,  2, 3, 4) ; it is 0 if there are repeated indices. 

If •Ly = 0 for any point y on the line L, what does this vector represent when y is 
not on L? A line and a point not on the line determine a plane, so perhaps n = •Ly 
gives us this very plane? Yes .  The proof is straightforward. A point x is on this plane 
if and only if it lies along a line connecting y to some point p on L. And a point is on 
such a line if and only if it has the form x = ay + bp for some real a, b not both zero. 
(To see this, consider a [y  1 ]T + b[p 1 ]T as a and b vary.) To show that x is on the plane 
nT we just need to verify that nTx is zero: 

The first term is zero because •L is antisymmetric. The second term is zero because 
p is on the line L, ensuring that (•Llp = - * Lp = 0. To summarize, we have: 

PROPOSITION. A point y is on L if and only if •Ly = 0. The plane nT determined 
by a line L and a point y not on L is given by n = •Ly. 

The plane •Ly comes with a well-defined orientation. From the previous section, 
we know the sign of its fourth component tells us which way it is facing. Taking 
L = q 1\ p, we have n4 = m · y = (p x q) · y, which is the triple scalar product of p,  
q and y ;  i t  flips its sign under odd permutations of  these points. 

If we put the two propositions together and apply some linear algebra, a few in
teresting consequences emerge. First, note that •LLn = 0 for all n, that is, •LL = 0, 
which says the point of intersection of a line with any plane lies on that line. The other 
way around, L * L = 0, which says that a line lies in the plane determined by that line 
and any point. The propositions also tell us we can recover the set of points on a line 
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from its matrix L in two ways: as the kernel of •L, or, equivalently, as the image of L. 
Turning this around as well, the set of planes containing a given line (called a pencil 
of planes by geometers) is given by kerL = im •L.  Since these kernels are clearly 
more than just {0} , the matrices L and •L must be singular. This can also be verified 
by noting that det L = det * L = h · m = 0, because heading and moment vectors are 
orthogonal. 

It is irresistible to point out that the algebraic patterns revealed above are tantaliz
ingly similar to what one finds in the mathematics of electromagnetism. There, the 
electric field vector E and the magnetic field vector B may be piled into the matrix 

the so-called Faraday tensor. Just as properties of lines expressed via h and m vectors 
in IR3 can be more concisely stated in terms of L and •L, properties of the electro
magnetic field can be more concisely stated in terms of F and •F. (In the latter case, 
the fourth dimension is the physical dimension of time.) Maxwell 's  four equations, the 
fundamental laws of electricity and magnetism, specify certain derivatives of E and 
B in three dimensions. These are equivalent to two simpler equations specifying the 
derivatives of F and •F. The latter form is considered more revealing of the structure 
of the theory. Jackson [5] is the classic reference on this .  

This suggests that there is more at work here than clever tricks with matrix sub
scripting. In fact, L = q 1\ p actually represents what is called a decomposable bivec
tor in four-dimensional space. A bivector is a piece of oriented area; when it slices 
into our three-dimensional space it leaves a scar: the line. The field of exterior algebra 
gives us a way to deal with oriented linear geometric objects . It is there where the 
operations of 1\ and * are revealed in full generality. What we have seen in this section 
is the shadow of 4D exterior algebra cast down into 3D. This viewpoint is only rarely 
treated. McCarthy [7] provides an accessible but abbreviated outline. 

Transformations :  to here, there, and nowhere 

We gain another benefit by this doubling of our universe into visible and invisible 
copies . It has to do with our understanding of transformations of space, especially 
the kinds of transformations one might perform on a scene in a computer graphics 
program. Although the cars, trees, and stars in our virtual reality will all be assigned 
positions in visible space, we will find some use in transformations that send some 
pieces of scenes to invisible space. To make sense of this, we need to examine how 
spatial transformations are represented. 

Consider first the affine transformations. An affine transformation is composed of 
a linear transformation (such as a rotation, a reflection, a scaling, or a shear) followed 
by a translation. Of course, a translation in three dimensions is not a linear transforma
tion of three-dimensional space, since it will move the origin. Our four-dimensional 
representation is useful here. For example, the following 4 x 4 matrix represents a par
ticular kind of linear transformation of IR4, and it determines an affine transformation 
of Euclidean space: [cas e 

A =  sir - sin e 
cas e 

0 
0 
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We apply this transformation to a point p = (x , y ,  z )  by picking a representation of 
p, say, p = [ x y z 1 ]T, then multiplying p by A on the left. The point [A p] is then the 
image of p under this transformation. For the particular A above, p would be rotated by 
the angle e about the z axis and then translated by (d1 , d2 , d3 ) .  This procedure is well 
defined: representing p as [5x 5y 5z 5]T and doing the matrix-vector multiplication, 
for example, would yield the same result. We will let [A] denote the transformation of 
points represented by A. In general, rotations composed with translations are called 
rigid motions . Their use extends far beyond computer graphics into fields such as 
computer vision and robot kinematics .  

One can also ask what these kind of affine transformations do to points at  infinity. 
Compare the image under [A] of the visible point ( 1 ,  1 , 1 )  and the point at infinity 
( 1 , 1 ,  l ) t :  [ 1] [cos e - sin e + d1] A 1 = cos e + sin e + d2 

1 1 + d3 
1 1 

[ 1] [ cos e - sin e ] A i � cos Orin O 
. 

This reveals that points at infinity remain at infinity, are immune from translation, but 
are subject to rotation. (In a computer game, as we drive along a curved road the 
finite-distance trees move around and come closer; the sun moves around but stays at 
infinity.) Note further that although A cannot move the origin in JR:4 , it can move the 
origin in the three-dimensional Euclidean space, which is represented by [0 0 0  1 ]T . 

It is useful to be able to quickly scan a 4 x 4 transformation matrix and discover 
roughly what kind of geometric action it performs.  The best way to do this is to ex
amine its columns. If e 1 = [ 1 0 0 O]T, e2 = [0 1 0 O]T, and so on, then the kth column is 
the image of ek under this transformation: Aek . In our four-dimensional representation 
the vectors e 1 , e2 , e3 represent points on the celestial sphere (perhaps somewhere in 
Aries ,  Cancer, and Ursa Minor, respectively?) . The vector e4 represents the origin. A 
transformation matrix (such as A) can be easily interpreted: the columns enumerate 
what happens to these four cardinal points, e� o e2 , e3 , e4 . 

A general affine transformation is represented by a nonsingular 4 x 4 matrix whose 
bottom row is [0 0 0 1 ] .  This form reveals that affine transformations are relatively 
gentle. Points in visible space stay in visible space, points on the celestial sphere stay 
on the celestial sphere, since multiplication by this matrix cannot change the fourth 
component v4 • 

Next we look at some violently disruptive transformations, in which large chunks 
of our universe burst through the celestial sphere and flee to the invisible universe, 
and parts of the celestial sphere cave in and become finite. These are called projective 
transformations. They are the most general class of transformations representable by 
these 4 x 4 matrices. 

Perhaps the most useful type of projective transformation is the perspective projec
tion, which turns up regularly in computer graphics.  It transforms three-dimensional 
space into the two-dimensional image of the space as seen on a flat screen by an eye 
behind the screen. The following matrix P represents a simple perspective projection, 
which is illustrated in FIGURE 3 :  [ 1 0 

0 1 P =  0 0 
0 0 

0 O

J 0 0 
0 0 . 

- 1  1 

Examine P closely. The first two columns tell us that [ed and [e2 ] are mapped to 
themselves . Column four reveals that the origin [e4 ] is also mapped to itself. This 
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X 

z 

[ e2 ] 
Figure 3 The action of the perspective projection P. The poi nt [v] i s  mapped to [Pv] on 
the xy-p lane ( in  the v i s ib le  u n iverse) . The poin ts [e1 ] and [e2 ] on the celestia l  sphere, as 
wel l as the or ig i n [e4 ] ,  a re u nchanged . The poin t  [e3 ] i s  moved from the celesti a l  sphere 
to the i nv i s ib le  u n iverse, s i nce-natu ra l ly?-it is i nv i s ib le  to the eye. The poi nt [ -e3 ] i s  
pu l l ed i n  from the  celestia l  sphere onto the  screen a t  t he  or ig i n .  

agrees with FIGURE 3 .  But look at the third column. The point [e3 ] ,  which sits at 
infinity in the +z direction, is mapped . . .  out of this world ! This point is mapped 
to [ [0 0 0 - 1  ]T] = (0, 0, Ot , the origin of invisible space. From FIGURE 3 ,  this is not 
surprising. The eye is aimed in the -z direction and so [e3 ] is behind it. This motivated 
our choice of the term invisible to denote this copy of Euclidean space. On the other 
hand, the antipodal point on the celestial sphere, represented by -e3 , is mapped to the 
(visible) origin. 

What happens to points that are originally invisible? The point ( - 1 ,  - 1 ,  2)0 can be 
represented by [ 1  1 -2 - l ]T . Multiplying it by P, we see it gets sent to [ [ 1 1 0 l ]T]  = 
( 1 ,  1 ,  0) , which is visible. Should this bother us? Not really. Computer graphics pro
grams place their flora, fauna, and killer robots in the visible universe; the invisible 
universe is completely unpopulated. If a bit of this uninhabited world got mapped 
back into our world, we'd see nothing extra. 

Since the eye is located at (0, 0, 1 ) ,  it is natural to be curious about where this point 
is sent by [P] . Representing it as [0 0 1 1 ]T and doing the matrix-vector multiplication, 
we get 0, our error signal. Put another way, we could interpret 0 as the coordinates of a 
special point called Nowhere. (Perhaps Everywhere would be an equally suitable label, 
as 0 could be construed as lying on any plane and any line: nTO = 0, •LO = 0.) 

Although we can inspect a matrix by viewing it as a list of four column vectors 
representing the images of the four cardinal points, this does not mean that the trans
formation is completely determined by the images of cardinal points . Consider the two 
matrices [ 1 0 0 OJ 0 1 0 0 

B =  
0 0 1 0 
1 1 1 0 

and 

[2 0 0 OJ 0 1 0 0 
C =  

0 0 1 0 . 

2 1 1 0 

The respective column vectors of B and C represent the same points : ( 1 ,  0, 0) , (0, 1 ,  0) , 
(0, 0, 1 ) ,  and Nowhere. The matrix B induces a perspective projection onto the plane 
x + y + z = 1 ,  with the center of projection (the eye) at the origin. The matrix C 
projects onto the same plane, but it is a very different kind of projection (see FIG
URE 4) .  To see this one can multiply the matrices by [ex cy cz 1 ]T on the right. We 
conclude that, referring to columns k = 1 ,  2, 3 ,  4, even when [bd = [ck ] for all k, it 
can still happen that [B] ¥= [C] . 
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L 

M M 
..•. · 

Figure 4 Two matrices whose col umn  vectors represent the same poi nts can sti l l  repre
sent d ifferent transformations .  Left: The act ion of the matrix 8, a perspective project ion 
onto the p lane x + y + z = 1 with the eye at the origi n .  Al l  poi nts on the ha lf- l i ne L are 
pu l led to poi nt p (wh ich i s  a l so on L); a l l  poi nts on the ha lf- l i n e  M are pu l l ed to poi nt q 
(wh ich is a l so on M) . Right: The act ion of the matrix C, a more comp l i cated projective 
transformation . A l l  poi nts of L are pu l l ed to a poi nt r on the p lane, but th is  poi nt is not 
on L. 

In fact, it can be shown that in three-dimensional space, the image of five indepen
dent points is needed to determine a projective transformation. This is not surprising, 
as there is room for four more numbers in the scale factors for each column of the 
transformation matrix. Many of the references cited in the last section of this paper 
give recipes on how to construct a general projective transformation given various 
requirements . For us now it will be more informative to give a specific recipe for per
spective projections, such as the ones shown in FIGURE 3 or the left half of FIGURE 4.  
We will then see that this recipe handles visible and invisible points differently. 

Building on the theory of oriented intersection of lines and planes in the previous 
section, developing a recipe for perspective projections will be easy. Recall that a line 
from p through q is represented by L = q 1\ p, and this line intersects the plane n T 

at the point x = Ln . Now let us take n T as the screen onto which we are projecting, 
and let c be the eye. Then the projection of an arbitrary point y onto the screen is the 
intersection of the line running from c to y with the plane nT, that is, x = (y 1\ c)n. 

Rewriting this a bit, we have x = (yeT - cyT)n = [ (cTn)l - (cnT)]y, so the matrix 
representing the projection onto screen n T through eye c is simply 

p = (CTD)I - COT . 

For example, if we take c = [0 0 l l ]T and nT = [0 0 1 0] we get the matrix P for the 
perspective projection shown in FIGURE 3 .  

Visibility still plays a role here. Look at the fourth component of Px for an arbitrary 
point x. It will be negative if and only if xT n > cTn. Well,"negative fourth component" 
means "invisible," and x T n > c T n means that the point x lies behind the eye c as 
it looks at the screen. Thus a perspective projection maps points behind the eye to 
invisible space, as expected. 

In a perspective projection it is often useful to separate the perspective from the 
projection, that is, to achieve the visual effect of perspective first without dropping any 
dimensionality. Later, perhaps after one has clipped some elements from the scene, it 
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can be projected down to 2D. For example, here is a nonsingular matrix that achieves 
the same perspective effect as P but does not collapse the scene: [ l 0 0 

0 l 0 R = 0 0 3 
0 0 - 1  R compresses the scene in front of the eye to a box of finite depth. The eye is still at 

c = (0, 0, l )  and is looking leftward. The frustum bounded by the faces (±2, ±2, - 1 ) 
and (± l ,  ± l ,  0) is sent to the cube [ - 1 ,  l ] 3 .  More dramatically, all points with z < 
0, including those at infinity, are pulled into the volume lying between z = - 3  and 
z = + l .  This is shown in FIGURE 5 .  Points behind the eye are, as we would expect 

Figure 5 The action of a nons i ngu la r  p rojective transformation common ly  used i n  com
puter graph ics, such as the matr ix  R given i n  the text. Left, vis ib le space; right i nv i s ib le  
space. The eye at  c looks leftward. The frustum F i s  transformed to the cube F' . Poi nts at 
i nfi n ity in front of the eye (e.g. ,  m, n) a re pu l led i n  to fi n ite d i stance. Po i nts beh i n d  the 
eye a re sent to i nv i s ib le  space. The eye itse lf i s  sent to the celestia l  sphere. After th i s  trans
formation,  an  o rthogona l  projection onto z = 0 wi l l  ach ieve the effect of a perspective 
projection . 
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now, sent to invisible space and inverted. Note that since R is nonsingular, the eye 
cannot be mapped to Nowhere; it is sent to infinity. In effect R slides everything to the 
right, pushing points through the celestial sphere in the process. When we finally need 
to collapse this to 2D for viewing on a screen, we can use the simplest of all orthogonal 
projections: we just zero-out the z-coordinate. 

On b l u rr i n g  a d i st i n ct ion 

Stare at FIGURE 1 and cross your eyes. See the two spheres superimpose, the two 
universes merge into one. The visible point (2, 3 ,  4) and the invisible point (2, 3 ,  4) 0 
now sit on top of each other. We can think of this cross-eyed image as a new space in 
which we treat p and -.p as the same point. But there seems to be a problem. When 
you cross your eyes, the two copies of the celestial spheres don't  line up right. The 
point at infinity r lands on top of its antipode -r, but clearly they have to be different. 
It would be odd if we couldn't  distinguish the north star from (let's pretend) the south 
star. One might think no good can come from this confusion. 

In fact, this eye-crossing exercise leads us to a classic and valuable mathematical 
theory. If we start with ordinary Euclidean space, wrap it in a celestial sphere, and 
say that antipodal points on the celestial sphere are indeed the same point, we end 
up with the space of (classical) projective geometry, JRP3 (read "real projective 3-
space"). We represent points as vectors in JR4 as we always did, but we relax one 
requirement: a vector in JR4 represents the same point when multiplied by any nonzero 
constant k; it does not have to be positive. We call the components of these vectors 
homogeneous coordinates . So in lRP3 , [2 3 4 O]T and [ -2 -3 -4 O]T represent the same 
point at infinity, since they yield each other when multiplied by k = - 1 . This means if 
we journey outward to the celestial sphere, as soon as we cross it we re-enter the same 
space again-from the opposite (antipodal) side. In JRP3 there is no extra invisible 
space, but now, yes, the north star is the same as the south star. 

Classical projective geometry is a pinnacle of mathematical elegance and power, 
and has a four-century history. The material is so rich we cannot enter into it here. 
The book by Pedoe [8] includes a brief historical introduction to the field. Brannan 
et al . [2] give a contemporary presentation of the theory from a coordinate-based 
perspective. Penna and Patterson [9] introduce it with an eye toward applications in 
computer graphics.  The paper by van Arsdale [12] is a compact reference for graph
ics programmers . In fact, projective geometry is so central to computer graphics that 
the Pentium III chip supports parallel 4D vector arithmetic specifically to enhance the 
performance of 3D programs. 

After sampling these concrete presentations, it is especially pleasing to strip away 
the coordinates and examine the clean axiomatic structure of this geometry, perhaps 
one of the most beautiful systems in all mathematics .  There are many good books here, 
for instance Coxeter [3] and Beutelspacher and Rosenbaum [1 ] .  

When you leaf through any of these texts on projective geometry one thing may 
strike you : the utter absence of inequalities !  One searches in vain for a single < sign. 
This is because classical projective geometry is all about incidence-points lying on 
lines, lines intersecting planes, and so on. Because it throws out the signs, it cannot 
say in front of or behind. Life is simpler: You are on it. Or you're not. But that cer
tainly makes it an odd choice for the geometric language of computer graphics .  For 
example, take the perspective projection P that was illustrated in FIGURE 3 .  The point 
(2, -3 ,  -4) , which is in front of the eye, and the point (2, -3 ,  6) , which is behind 
the eye, were mapped to the visible screen and a corresponding invisible screen, re
spectively. When we cross our eyes to get classical projective 3-space, these screens 
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coincide; both points are both mapped to the same screen. Thus, the scene behind 
the viewer becomes superimposed, upside down, on the scene in front of the viewer. 
Accordingly, the program code will require a few judiciously placed if statements to 
pluck out these superfluous, ghostly points . 

The geometry we have explored in this paper is called oriented projective geome
try. Oriented projective space-call it JRO P3-is the union of visible space, invisible 
space, and the celestial sphere. Stolfi [10] provides the definitive work on the subject. 
The oriented approach has still not made it into the textbooks, however. One reason 
may be that mathematicians (those who have heard of it) certainly see it as intrinsically 
less interesting. For example, the topology of JRO P3 can be seen to be the same as the 
familiar 3-sphere, S3 . JRP3 is given by the quotient JRO P3 I { - 1 ,  1 } , which identifies 
antipodes (our eye-crossing exercise) . Not a sphere of any kind, JRP3 is sui generis, 
with applications in many branches of mathematics .  

Another reason that JRO P3 has not yet taken the world by storm is that computer 
graphics programmers (those who have heard of it) might see oriented projective ge
ometry as merely a tidying up of the mathematics that does not affect their everyday 
work. The front/back superposition problem can indeed be dealt with within the clas
sical approach. For example, one can use certain non-singular perspective transforma
tions, such as the R described in the previous section, to handle this. When you cross 
your eyes and look at the bottom half of FIGURE 5 ,  the images under R of the front 
and back views remain disjoint even as the spheres superimpose. Programs can just 
clip out what they don't  want. But one should be frank: insofar as one peeks at the 
signs of homogeneous vectors, one is using oriented projective geometry. Computer 
graphics has done so from its inception. 

In the end, the primary advantage of oriented projective geometry may be its pic
turability. (One can consult Stolfi [11]  for other advantages this article has not touched 
on, such as the fact that convexity can be defined in JRO P3 but not in JRP3 .) Points at 
infinity comprise a 2-sphere, and this fits our experience well . The oriented approach 
provides an alternative way to present the perspective transformations commonly fea
tured as examples in linear algebra textbooks nowadays .  It allows a concrete global 
picture of the operations of the transformations, without requiring the student to vi
sualize the unusual identifications of projective space, which may produce more head 
scratching than is useful at that level. 

The double-space pictures of oriented projective geometry seem odd at first, but 
they are reminiscent of a kind of Dantean cosmology that is eerily engaging. It is 
satisfying to tell one's linear algebra students to go out at night and take a look at the 
dome of the heavens ,  imagining an entire universe behind it converging on an infinitely 
distant invisible origin. And the geometry of this world is just one quotient operation 
away from the most sublime system in mathematics. 
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Given 6ABC, let A', B' ,  C' be any points on the sides C B, AC, and BA .  This creates 
a second triangle 6A' B'C' . A third triangle is determined by the vertices P, Q, R, the 
intersection points of the segment pairs AA' and BB', BB' and CC', CC' and AA', as 
shown in FIGURE 1 .  

Figure 1 The th ree tr iangles 

Certain results about the ratios of areas of these three triangles are known. In this 
note, we use vector algebra to derive them. We also obtain some new results concerning 
the relative positions of the centroids of the triangles . 

A line segment joining a vertex of a triangle and a point on the side opposite that 
vertex is called a cevian. The cevians AA' , BB' ,  and CC' are determined by specifying 
certain ratios on the sides, namely a triple (t1 , t2 , t3 ) such that 

AB' 
-- - t AC - ' ' 

BC' 
-- - t 
BA - 2 ' and 

CA' 
-- - t3 
CB - ' 

where the t s  are numbers between 0 and 1 .  If t1 = t2 = t3 = 1 /2 , then the cevians are 
the medians and the points P, Q, and R are known to coincide. This common point 
is called the centroid of 6ABC.  If t1 = t2 = t3 = 1 /3 , then, surprisingly, the area of 
6P QR is one seventh the area of 6ABC.  A clever geometric proof of this result 
is given by H. Steinhaus [8, p. 9] . If K" K2, and K3 represent the areas of triangles 
6ABC, 6A'B'C' , and 6P QR, then formulas for the ratios K2/K1 and K3/K1 are 
known for the general case with the t s  not necessarily equal. These results are given 
by E. J. Routh [7] , and H. S. M. Coxeter [2] proves them as an application of affine 
geometry. 

3 6 7  
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Let G 1 o  G2 , and G3 be the centroids of t::.ABC,  t::.A'B'C' , and t::.P QR.  The cen
troids G t  and G2 are known to coincide if and only if ft = t2 = t3 . R. Johnson [4, 
p. 175]  gives a proof of this result, which he attributes to W. Fuhrmann. M. Khan and 
W. Pierce [5] proved that if ft = t2 = t3 , then G t  and G3 coincide. This result was 
posed as a problem by Khan and solved by Pierce by representing points in the plane 
as complex numbers . L. Hahn [3] introduced this method and, as an example, uses it 
to prove that the medians of a triangle are concurrent. A. Ayoub [1] uses the complex 
number representation to solve a related problem concerning centroids. 

Preliminary vector results To simplify calculations, we will assume without loss of 
generality that the point A is the origin 0. If we denote by X the vector from A to X, 
then 

A' = C + t3 (B - C) , B' = ft C , and C' = ( 1 - t2)B . 

The cevians are divided into parts by the vertices P, Q, and R, and we define the 
following ratios : 

AP 
A t  _ _ _ - AA' ' 

B Q  
Az - -- BB' ' 

CR 
A 3  _ _ _ - CC' ' 

AR 
f.L t = 

AA' ' 
BP  

f.Lz = BB' ' 
C Q  

f.L3 = CC'
. 

We now seek to express the AS and the f.LS in terms of the ts .  The vector P can be 
expressed in two ways: 

and 

P = B + /Lz (B' - B) =  B + f.Lz (tt C - B) . 

Setting these two expressions for P equal and equating the coefficients of B gives 
A t t3 = 1 - tL2 ; equating the coefficients of C gives A t  ( 1  - t3 ) = f.Lzft . Solving these 
two equations gives At and f.Lz .  Similar calculations using vectors Q and R give the 
remaining AS and f.LS and we have 

tz 
Az = ----

1 - ft + ft tz
' 

1 - t3 
/L2 = ' 

1 - t3 + ft t3 

t3 
A3 = ' 

1 - tz + tzt3 

1 - ft 
f.L3 = . 

1 - ft + ft tz 

This result, for the case ft = t2 = t3 , is given by T. Zerger and R. Young [9] , using 
the same method that we used above for the general case. 

Areas ratios for the three triangles The area of a triangle determined by two vec
tors is equal to one-half the magnitude of their cross product. Thus for t::.ABC we 
have 

Kt = I B X C l  /2. 

For t::.A' B'C' we have, after some simplification, 

Kz = I <B' - A') x (C' - A') I /2 

= [ ( 1 - f t ) ( l - tz) ( l - t3 ) + t1 t2 t 3 ]  IB x C I /2, 
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where we have used the relations B x B = 0, C x C = 0, and B x C = -C x B. Thus 
the area ratio K2/ K1 is given by the bracketed term above. With changes in notation, 
this result agrees with Routh [7, p. 82] and Coxeter [2, p. 2 1 2] .  

For 6P QR w e  have 

K3 = I (Q - P) X (R - P) I /2,  

where P = A. 1A' ,  Q = B + A.2 (B' - B) , and R = t-L1A' . The A.s, f-LS and the primed 
vectors are given above in terms of the t s  and the vectors B and C. The calculations 
involving K3 are similar to those for K2 , but far more tedious .  We have used Maple 
to help with the computations and would be glad to send an electronic copy of our 
worksheet to interested readers. 

The resulting equation for K3 is 

and thus the area ratio K3j  K1 is given by the bracketed term above. With changes in 
notation, this result agrees with the corresponding results of Coxeter [2, pp. 2 1 9-220] 
and Routh [7, p. 82] . 

Conditions for coincidence of the centroids The centroid of a triangle with vertices 
determined by three vectors is known to be given by one-third the sum of the three 
vectors. This result was proved as an example for vector proofs of geometric results in 
a paper by W. Mueller [6] . Thus the centroid of 6ABC is given by 

G1 = (A + B + C) /3 = (B + C) /3 ,  

since A is the origin. The centroid of  6A' B' C' is represented by the vector 

G2 = (A' +  B' + C')/3  = ( 1  - t2 + t3 )B/3 + ( 1 -t3 + tJ )Cj3 .  

The centroids of  triangles !:::,.ABC and !:::,.A' B 'C '  coincide i f  and only i f  G1 = G2 . 
Equating the B and C components in this vector equation gives the two scalar equa
tions, 1 - t2 + t3 = 1 and 1 - t3 + t1 = 1 .  Thus G 1 and G2 coincide if and only if 
tl = t2 = t3 . 

For 6PQR we have 

G3 = (P + Q + R)/3 ,  

where P = A. 1A' , Q = B + A.2 (B' - B),  and R = 1-LtA' . Centroids G 1  and G3 coincide 
if and only if G1 = G3 . We first express this vector equation in terms of the ts and 
the vectors B and C, and then obtain two scalar equations relating t1 , t2 , and t3 • After 
combining and factoring these equations, we find that G1  = G3 if and only if t1 = 
(t3 - t2 + t2t3 ) j t3 and t2 (t2 - t3 ) ( l - t2 + t2t3 ) / t3 = 0. With the t s  being between 0 
and 1 ,  we have t3 , t2 , and 1 - t2 + t2t3 all nonzero. Hence G 1 and G3 coincide if and 
only if t1 = t2 = t3 • Similar calculations also show that G2 and G3 coincide if and 
only if t1 = t2 = t3 • The calculations involving G3 are similar to those for G2, but even 
more tedious than for K3 • Again, we enlisted the help of Maple for the computations . 

Collinear centroids If the t s  are distinct then the three centroids will be distinct, and 
they will be collinear if and only if the sine of the angle between vectors (G1 - G2) 
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t, 

Figure 2 Permiss ib le  regions for ( t, , t2 ) 

and (Gt - G3)  is 0. This will happen if and only if (Gt - G2) x (Gt - G3)  = 0. 
Expanding this cross product in terms of the t s  and the vectors B and C gives 

(Gt - G2) X (G, - G3)  

= � [ (!2 - t3 - t2t3 + t, t3 ) (t3 - t, - t, t3 + t, t2) (t, - !2 - t, t2 + t2t3 ) J B X c .  
1 8  ( 1  - t, + t, t2) ( 1  - !2 + !2!3 ) ( 1  - t3 + t, t3 ) 

Since the denominator of the bracketed term is never 0, collinearity occurs if and 
only if at least one of the factors in the numerator is 0. Setting each of these factors to 
0 and solving for t3 gives three corresponding conditions :  

The three centroids are collinear if  and only if  at least one of  these three equations i s  
satisfied with the ts  all between 0 and 1 .  

Given any pair 0 < ft . t2 < 1 ,  we must require 0 < t3 < 1 .  This is always true for 
t3 = t3A .  The permissible (t1 , t2) regions for which 0 < t38 < 1 are shown graphically 
in FIGURE 2 with the letter B .  The corresponding (tt .  t2) regions where the inequalities 
0 < t3c < 1 and 0 < t3A < 1 are satisfied are also shown there with the letters C 
and A. The intersection point of the two curves in FIGURE 2 is ( r, 1 - r ) , where 
r = (,JS - 1 ) /2 , the reciprocal of the golden ratio. For example if tt = 2/5, t2 = 1 /5 ,  
then t3A = 1 /4, t38 = 8/ 15 ,  and t3c = -3/5,  and thus there are two permissible values 
of t3 • This agrees with FIGURE 2 since (2/5 , 1 /5) is in the region A,B . The three 
collinear centroids for the case with t3 = t38 = 8/ 1 5  are shown in FIGURE 3 .  This 
figure was drawn using Geometer's SketchPad software. Note that G t G3 > G t G2 in 
this case, and that the line through the centroids is parallel to the cevian B B' .  This 
example demonstrates a special case of the following general results . 

Result 1 For any triple (tt .  !2 , t3A )  with 0 < t, < 1 ,  0 < !2 < 1 ,  and 0 < t3A < 1 ,  the 
line through the three centroids is parallel to the cevian AA' .  Analogous results hold 
with the As replaced by either Bs or Cs. 

Result 2 If the three centroids are collinear then G t G3 > G t G2 . 
To prove these two results, we calculate expressions for G2 - Gt and G3 - Gt for 

each of the cases A, B ,  and C. We let (G2 - Gt)A  and (G3 - Gt )A  denote the vector 
differences, evaluated at (tt .  t2 , t3A ) ,  with analogous definitions for cases B and C. 
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mLG 1G2G3 = 1 79.96° 

AB' 

AC 
= 0.400 

��· = 0.200 
CA ' 

CB 
= 0.533 

A 
C' 

Figure 3 An example of col l i near centro ids  

3 7 1  

B 

After some calculation, we obtain the following expressions for the vectors joining the 
centroids. 

The three cases for Result 1 follow immediately from the above relations. Result 2 
for cases B and C follows as well since 1 - t1 + t1 t2 is between 0 and 1 .  Case A follows 
since ( 1  - t1 + t1 t2) / ( 1  - t1 + t2) is also between 0 and 1 .  Finally, we note that for 
collinear centroids the ratio G1 Gz!G 1 G3 = IG2 - G1 1 / IG3 - G1 1  = 1 - t1 + t1 tz for 
both cases B and C. 

Remarks High school and college curricula have given scant attention to geometry 
in recent years and yet many of us would agree that it was one of the most worthwhile 
courses in our training. The formal theorem-proof approach seems to have little appeal 
to most undergraduate students . Mueller [6] makes the case that, with modem com
puter software, there are many geometric topics for undergraduates to explore using 
vector algebra. Many of the calculations can be handled easily with computer alge
bra systems. An equally important computer tool is geometric sketching software, for 
example The Geometer's SketchPad. Considerable insight can be obtained by sketch
ing the figure and dragging the various points about. For the centroid problem it is 
interesting to animate the sketch and show the motion of G2 and G3 as A', B' , and 
C' move back and forth along their sides of the given L.ABC .  A related problem is 
to find what motion of A', B' , and C' leads to orbital motion of G2 or G3 around the 
fixed center G 1 • Solutions to the orbital problems will depend on the coordinates of 
the vertices of D. ABC .  Another variation of the problems that we have not considered 
is to permit the points A', B' ,  and C' to lie anywhere on the lines determined by the 
sides of L.ABC.  

Finally, a word of  warning about computer algebra systems : they do not always 
return all possible solutions for some algebraic equations . So if you are looking for 
necessary conditions for a solution, you must solve the equations without depending 
solely on the s o lve command. In this note, we were always able to solve by factoring 
the equations into linear factors to avoid this difficulty. 
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Tiling problems are the jigsaw puzzles of a mathematician. For hundreds of years such 
problems have produced an array of beautiful and intriguing patterns. In this note we 
consider tiling a large rectangle using smaller rectangles, and present a problem where, 
although the pieces are one of only two sizes, a large collection of rectangles can be 
tiled. Problem B-3 from the 1 99 1  William Lowell Putnam Examination asked: "Does 
there exist a natural number L, such that if m and n are integers greater than L, then an 
m x n rectangle may be expressed as a union of 4 x 6 and 5 x 7 rectangles, any two 
of which intersect at most along their boundaries?" The answer is yes, and a solution 
appeared in the Monthly [3] . The published solution is an existential proof and no 
attempt is made to find the minimal value of L .  In this paper we show that the smallest 
L, denoted L, equals 33 .  

We will refer to the 4 x 6 and 5 x 7 rectangles as  tiles, and if  a given rectangle can 
be expressed as a union of 4 x 6 and 5 x 7 tiles, any two of which intersect at most 
along their boundaries, we will simply say the rectangle can be tiled. Since tiles can 
be rotated, we do not distinguish a 4 x 6 tile from a 6 x 4 tile or a 5 x 7 tile from a 
7 x 5 tile. However, the larger rectangles that we will cover with our tiles will have a 
fixed orientation, so that if we refer to a "39 x 29 rectangle" we mean a rectangle with 
39 rows (running from top to bottom) and 29 columns (running from left to right) . We 
will refer to a 4 x 6 tile as an even tile and a 5 x 7 tile as an odd tile. 

To show a rectangle can be tiled, our strategy will be to decompose it into smaller 
rectangles that can easily be tiled. While searching for a possible tiling using our tiles, 
it is useful to note that the area A of a rectangle that can be tiled must satisfy the 
equation 24x + 35y = A where x and y are nonnegative integers . For example, a 
tiling of a 34 x 37 rectangle could only use 32 even tiles and 14 odd tiles since x = 32 
and y = 14 is the unique solution of the equation 24x + 35y = 34 x 37 = 1 , 258 ,  



VOL.  75 ,  NO. 5, DECEM B E R  2 002 373 

where x and y are nonnegative integers . The solutions to this equation determine a 
list of the permissible quantities of the two types of tiles used in a tiling, and provide 
a starting point in the search for an actual tiling. On the other hand, showing that a 
rectangle cannot be tiled is not as straightforward, and for these cases we use relatively 
complicated coloring arguments. 

The tiling of rectangles has been studied elsewhere [1, 2, 4, 6] . The specific problem 
considered here is somewhat different from these papers in that here only two tiles with 
prescribed dimensions can be used. We note that the areas of the two tiles are relatively 
prime. This is a necessary condition because if an integer p > 1 divides each area, 
tiling a rectangle whose sides are both congruent to 1 mod p would not be possible. 

We now describe the existence proof from the Monthly [3] . It uses the following 
well-known fact from algebra, which has been credited to Sylvester [5] . 

LEMMA 1 .  If a and b are natural numbers with gcd(a , b) = 1, then every integer 
n ::=: (a - 1 ) (b - 1 )  can be written as a nonnegative linear combination of a and b, 
while the integer n = (a - l ) (b - 1 )  - 1 cannot. 

Proof We do the last part first, showing that this number always requires negative 
integers as coefficients of one of a and b in a linear combination. One particular way 
to express this number is n = (a - l ) (b - 1 ) - 1 = (b - 1 )a + (- l )b, where the 
coefficients are b - 1 and - 1 .  In general, if x and y give one integer solution to ax + 
by = c, then all other solutions are of the form a (x + kb) + b(y - ka) = c . So, adding 
a multiple mb to the first solution and subtracting ma from the second yields additional 
solutions of the form n = (a - 1 ) (b - 1 )  - 1 = (b - 1 + mb)a + ( - 1  - ma)b. If m 
is negative, the first coefficient is negative; if m is nonnegative, the second coefficient 
is negative. Thus, our equation has no nonnegative solutions for this value of n . 

Any larger n is of the form n = (a - l ) (b - 1 ) - 1 + j . Since gcd(a , b) = 1 ,  there 
exist x and y with 1 = xa + yb, but one of x or y must be negative. Multiplying 
by j gives j = (jx)a + (jy)b . This solution can again be modified by adding mb 
to the first solution and subtracting ma from the second. By judiciously selecting m 
we obtain the unique solution j = sa +  tb for which -(b - 1 )  ::=:: s ::=:: 0 and t ::::: 1 .  
Adding this to the unique solution obtained above (for j = 0) yields n = (a - l ) (b -
1 ) - 1 + j = (b - 1)a + (- l )b + sa +  tb = ( (b - 1 + s)a + (t - l )b .  This is the 
required nonnegative combination for n .  • 

This result gives one solution to the original Putnam problem, with a guarantee that 
every rectangle whose sides are larger than 2,2 1 3  can be tiled: A 20 x 6 rectangle 
can be tiled by joining 5 even tiles ,  and a 20 x 7 rectangle can be tiled by joining 4 
odd tiles. By applying Lemma 1 we see that a 20 x n rectangle can be tiled for any 
n ::::: (7 - 1 ) (6 - 1 )  = 30. Since a 35 x 5 rectangle and a 35 x 7 rectangle can be 
easily tiled, applying Lemma 1 we conclude that a 35 x n rectangle can be tiled for 
any n ::::: 24. Combining these two facts , we can tile a 55 x n rectangle for any n ::::: 30. 
Since rectangles with dimensions 42 x 4 and 42 x 5 can be tiled, Lemma 1 tells us 
that a 42 x n rectangle can be tiled for any n ::::: 12.  Finally, since gcd(42 , 55) = 1 ,  
Lemma 1 again tells us that all m x n rectangles with m ::::: n ::::: 54· 4 1  = 2 ,  2 1 4  can 
be tiled. 

This proof guarantees that L = 22 1 3  will suffice. One might try to improve on this 
lower bound. By generating the same rectangular strips in a different order, we can 
combine a tiling for a 35 x n rectangle with n ::::: 24 with a 42 x n rectangle with 
n ::::: 1 2  to get a 77 x n rectangle with n ::::: 24. Combining this with a 20 x n rectangle 
for n ::::: 30 we get solutions whenever m ::::: n ::::: 76 · 19 = 1444. However no attempt 
along these lines can be expected to come close to the minimum value of L = 33 ,  
which will follow from Lemma 4 and Theorem 5 .  
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A lower bound for L In this section w e  will establish a lower bound for L by show
ing that a 33 x 33 square cannot be tiled. Later we will show that this bound is tight 
by showing that any rectangle with both dimensions at least 34 can be tiled. In fact we 
actually state a slightly stronger result in the following theorem. 

THEOREM 2 .  For 28 � n � m, the only m x n rectangles that cannot be tiled with 
tiles of size 4 x 6 and 5 x 7 are the rectangles of sizes 3 1  x 29, 33 x 32, and 33 x 33 .  

We will prove the 31 x 29 and 33 x 33 rectangles cannot be  tiled. Since the proof 
involving the 33 x 32 rectangle is lengthy and not needed for our original problem, we 
omit this proof. 

LEMMA 3 .  The 3 1  x 29 rectangle cannot be tiled using only 4 x 6 and 5 x 7 rect
angles. 

Proof There are two ways to write the area of the 3 1  x 29 rectangle as a linear 
combination of 24 and 35 ,  namely 899 = 36 . 24 + 1 . 35 = 1 . 24 + 25 · 35 .  Since 
these can be shown to be the only solutions using nonnegative integers, a tiling requires 
either 1 odd and 36 even tiles or 25 odd and 1 even tile. The combination with only 
1 odd tile cannot be used since every row of the rectangle must contain an odd tile. 
We consider a tiling using the second combination and claim that the unique even tile 
cannot appear along a border. Without loss of generality assume the tile appears along 
the horizontal base. Then the tile immediately above it must have length either 4 or 
6, a contradiction. Thus the even tile must appear in the interior forming a pinwheel 
design as shown in FIGURE 1 .  

c 

- a  q.-b-
d 
l 

(a) (b) 
Figure 1 Even ti le  posit ioned i n  the i nter ior  

If the even tile is positioned as shown in FIGURE 1 a, then a +  b must equal 29 -
6 = 23. However, since 23 cannot be expressed as a nonnegative combination of 5 
and 7, this configuration is impossible . Hence we assume the even tile is positioned 
as shown in FIGURE 1 b. Then c + d = 25 , and both c and d must be multiples of 5 .  
Examining the column immediately to the left of the even tile, c + 6 must be a nonneg
ative combination of 5 and 7, which implies c � 1 5 .  Similarly the column immediately 
to the right of the even tile forces d � 1 5 .  This implies c + d � 30, a contradiction . 

• 

Next, we use a coloring argument to show that a tiling of the 33 x 33 square is 
impossible. 
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LEMMA 4. The 33 x 33 square cannot be tiled using only 4 x 6 and S x 7 rect
angles. 

Proof. First we give the unique ways to express the area of this square as a linear 
combination of the areas of the tiles :  332 = 1089 = 3 · 3S + 41 · 24 = 27 · 3S + 6 · 24. 
This means that a tiling of the square requires either 3 odd and 4 1  even tiles or 27 odd 
and 6 even tiles. The odd length of the square requires at least one odd tile in every 
row, which would require at least S odd tiles, so we must take the second combination 
with 27 odd tiles and 6 even tiles. 

Consider a potential tiling of the 33 x 33 square using 27 odd tiles and 6 even tiles .  
Let H denote the number of odd tiles with their side of length 7 positioned horizon
tally and let V be the number of tiles with their side of length 7 positioned vertically. 
Thus H + V = 27 . By rotating the entire tiling 90° if needed, we may assume that 
H :::: 1 3 .  Similarly, the even tiles give the equation h + v = 6. Consider the average 
number of odd tiles per row. Because each horizontal tile appears in S rows and each 
vertical tile appears in 7 rows, this average is (SH + 7V)/33 = ( 1 89 - 2H)/33 = 
S + (24 - 2H)j33 . Since 7 · S > 33 ,  and 6 odd tiles appearing in the same row would 
cover all but one or three columns, the maximum number of odd tiles in any row is S .  
Hence the average cannot exceed S and thus H � 12 .  We conclude that 1 2 :::: H :::: 1 3 .  

Color the rows s o  that for 0 :::: i :::: 32, row i gets color i mod S for distinct colors 
0, 1 , 2, 3 ,  4. There will be 23 1 cells colored 0, 1 and 2, and 198 cells colored with each 
of the colors 3 and 4. Represent the number of cells of each color in the square by 
a color vector (23 1 ,  23 1 , 23 1 ,  198 ,  198) . Every horizontal odd tile covers 7 cells of 
each color, represented by the color vector (7 ,  7, 7, 7, 7) . A vertical odd tile covers 10  
cells of  one color, 10  cells of  a second color, and S cells of  each of  the three remaining 
colors . We say that a vertical odd tile covers a rotation of ( 10, 10 ,  S ,  S ,  S ) .  Horizon
tal even tiles cover a rotation of (6 ,  6, 6, 6, 0) and vertical even tiles cover a rotation 
of (8 ,  4, 4, 4, 4) . Note that ( 10 , 10 ,  S ,  S ,  S) is the sum (S ,  S ,  S ,  S ,  S) + (S ,  S ,  0, 0, 0) , 
(6 ,  6, 6, 6, 0) is (6 ,  6, 6, 6, 6) + (0, 0, 0, 0, -6) , and (8 ,  4, 4, 4, 4) is (4, 4, 4, 4, 4) + 
(4, 0, 0, 0, 0) . The seven possible values for h and two values for H yield 14 cases. 
In each case we subtract the uniform vector (7 H + S V + 6h + 4v) ( 1 ,  1 ,  1 ,  1 ,  1) from 
the color vector to leave a remainder vector that must be covered with rotations of the 
residual terms of (S ,  S ,  0 ,  0, 0) , (0, 0, 0, 0, -6) and (4, 0, 0, 0, 0) . The 14 cases and 
their remainder vectors are given in TABLE 1 .  We show that each case fails to give a 
solution for one of two reasons given below. 

Consider what happens when we try to form the remainder vectors from the avail
able residual terms modulo S .  The residual for each odd vertical tile reduces to the 
zero vector mod S ,  so it offers no help in creating the remainder vector. Each even tile, 
whether in horizontal or vertical position, contributes a rotation of (0, 0 ,  0 ,  0 ,  - 1 ) .  
This means that we can only form a remainder with no more than six adjustments of 
- 1  mod S among all S columns. However, we need 1 1  adjustments for each of cases 
4, S ,  6, 7, and 14 in TABLE 1 ,  and 16 adjustments for each of the cases 2, 3 , 12 ,  and 
1 3 .  Hence, none of these cases yield a valid solution. 

For cases 1 ,  8 ,  9 ,  1 0, and 1 1 , a solution mod S is possible, but it cannot lead to a 
nonnegative solution. For instance, in case 1 ,  six adjustments of (4, 0, 0, 0, 0) must be 
rotated and summed to contribute (8 ,  8 ,  8 ,  0, 0) and thus leave (40, 40, 40, l S ,  l S )  to 
be covered by the l S terms of type (S ,  S ,  0, 0, 0) . Suppose a times we use the resid
ual as written to adjust the first two columns, b times we rotate it one step to the 
right, c times we rotate it two steps,  d times we rotate it three steps,  and e times 
we rotate it four steps .  Then the l S vertical odd tiles contribute S (a + e, a + b, b + 
c, c + d,  d + e) .  This gives the unique solution, a =  b = c = e = 4 and d = - 1 .  
Since d is negative, the solution cannot be realized. Similarly, case 8 requires using 
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TAB L E  1 :  Fou rteen possible cases for the 3 3  x 3 3  problem 

Case h v H v Remainder Vector Reason for No Solution 

1 0 6 1 2  1 5  48 48 48 15 15 d = - 1  
2 0 6 1 3  1 4  46 46 46 1 3  1 3  No solution mod 5 
3 1 5 12  1 5  46 46 46 1 3  1 3  No solution mod 5 
4 1 5 1 3  1 4  44 44 44 1 1  1 1  No solution mod 5 
5 2 4 12  1 5  44 44 44 1 1  1 1  No solution mod 5 
6 2 4 1 3  1 4  42 42 42 9 9 No solution mod 5 
7 3 3 12  1 5  42 42 42 9 9 No solution mod 5 
8 3 3 1 3  1 4  40 40 40 7 7 d =  -2 
9 4 2 12  15  40 40 40 7 7 d = - 1  

10  4 2 1 3  1 4  3 8  3 8  3 8  5 5 d = -2 or -6 
1 1  5 1 12  1 5  38  38 38  5 5 d = -3 or -5 
12 5 1 1 3  1 4  3 6  36 36 3 3 No solution mod 5 
1 3  6 0 12  1 5  36  36  36  3 3 No solution mod 5 
14 6 0 1 3  1 4  34 34 34 1 1 No solution mod 5 

six adjustments of (4, 0, 0, 0, 0} and (0, 0, 0, 0, -6} in columns 4 and 5 to leave either 
(40, 40, 40, 5 ,  15 }  or (40, 40, 40, 1 5 ,  5 } . Either solution includes d = -2. In case 9 ,  
we reduce to (40, 40, 40, 15 ,  1 5 } , (40, 40, 40, 25 , 5 } or (40, 40, 40, 5 , 25 } ;  both lead to 
d = - 1 .  In case 10  we may assign our four 6s and two 4s in three different ways to the 
first three columns. However, all three lead to solutions with either d = -6 or d = -2. 
Finally, case 1 1  leads to (40, 50, 50, 5 ,  5 } , (50, 40,  50, 5 ,  5 }  or (50, 50, 40,  5 ,  5 }  with 
d = -3 or -5 .  Note that only two simple ideas have been used to eliminate all 14 
cases. 

Hence the 33 x 33 square cannot be tiled. • 

The best lower bound We now show that any rectangle with 34 :::: n :::: m can be 
tiled, which will establish that Ls :::: 33 .  In fact, the reasoning shows the slightly 
stronger result, that any rectangle with 28 :::: n :::: m and not having dimensions 
3 1  x 29, 33 x 32 or 33 x 33 can be tiled. 

THEOREM 5 .  Any rectangle with 34 :::: n :::: m can be tiled using only 4 x 6 and 
5 x 7 rectangles. 

Proof Consider a rectangle where n :::: 39 and m :::: 46 and is not one of the three 
forbidden sizes given above. The scheme for tiling the rectangle is given in TABLE 2.  
In this table the columns represent values of n and the rows represent values of m .  

We use various notation to describe different strategies for tiling rectangles. An 
entry m * n in the cell for an m x n rectangle indicates the existence of a tile whose 
dimensions divide the dimensions of the rectangle. For example, the entry 30 * 28 
indicates a tile whose dimensions (here 6 and 4) divide into the respective dimensions 
of the rectangle (here 30 and 28). Consequently, we can stack even tiles in a 5 x 7 
array to tile the rectangle. We use the formula a * (b + c) to indicate a rectangle tiled 
by partitioning it into smaller a x b and a x c rectangles, both of which are easily 
tiled. For example, the entry ( 14  + 1 6) * 30 indicates that a 30 x 30 rectangle is tiled 
by joining a 14 x 30 rectangle with a 1 6  x 30 rectangle. An entry (a + b) * c means 
a rectangle can be tiled by partitioning it into smaller a x c and b x c rectangles . For 
example, the entry 30 * (2 1 + 8) can be tiled by joining a 30 x 2 1  rectangle to a 30 x 8 
rectangle. 



TABLE  2 :  Ti l i ng schemes 

m j n  28 29 30 31  
28 ( 1 0 + 1 8) * 28 

29 (5 + 24) * 28 FIGURE 4 

30 30 * 28 30 * (2 1 + 8) (14 + 1 6) * 30 

3 1  (25 + 6) * 28 Impossible (7 + 24) * 30 P( l 9 ;  8; 7 ; 1 6) 

32 (20 + 1 2) * 28 (32 * 1 2) 11' 4  P(6; 7 ; 1 2; 19)  

+P(6; 5 ;  6; 5)  

33 11' 5  P(6; 5 ;  12 ;  17) P(8 ; 1 9 ; 4; 7) 

Includes 27 x 27 
P(6; 5; 6; 5) 

34 P(20; 8 ; 10; 15) P(l4;  6; 14;  2 1 ) 

35 35 * ( 1 4  + 15)  35 * ( 1 0  + 2 1 ) 

36 36 * ( 1 2 + 17) 36 * ( 1 2  + 19) 

37 37 * ( 1 4  + 15)  P(8 ; 7 ; 22; 19) 

38  P( l4 ;  4; 14;  4)  11' 10  

39  FIGURE 4 39 * ( 1 2 + 19) 

40 40 * (7 + 10 + 1 2) 11' 10 

41 P(7 ; 14;  4 1 ; 2 1 )  

42 11' 14 

43 11' 14 

44 11' 14  

45 45 * ( 1 2  + 17) 

46 11' 14  

32 33 34 35 

( 1 2  + 20) * 32 

Impossible Impossible 

11' 6  P( l O; 14; 10; 14) 

11' 6  <= 5 ¢= 5 11' 5  

11' 6  <= 4  ¢= 4 

11' 6  P( 10; 14; 20; 14) 37 * (14 + 20) 

11' 6  11' 1 0 38 * ( 1 0  + 24) 

39 * ( 1 2  + 20) 11' 10  P( l 8 ; 10; 15 ; 20) 

11' 6  11' 1 0 11' 1 2  

11' 10  

<= 4 

43 * ( 1 2  + 2 1 ) 

11' 1 0 

36 37 38 

11' 4  

37 * (20 + 1 7) 

P(14 ;  8 ; 14 ;  22) 11' 10 

P( 1 5 ;  25 ; 4; 7) 

<= 7  

P(20; 25 ; 6; 5) 

11' 14 

39 40 
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FIGURE 4 

11' 1 2  <= 1 2  

<= 1 2 . 

<= 1 2 . 

<= 1 2  

<= 1 2 ! 

<= 1 2  

<= 1 2  

(§ : 
'.1 

,Ul 
z 
p 

,Ul 
0 m n m � 
0::1 m 
;;o:l 
""" 
0 
8 

w 
'.J 
'.J 



378 

D 
4 x 6  5 x 7 

MATH EMATICS MAGAZI N E  

Figure 2 Pi nwheel t i l i ng of a 34 x 3 3  rectang le 

An entry 1l" means that we can express this rectangle as the union of two smaller 
rectangles that can be tiled. For example, the table entry for 33 x 28 is 1l" 5, indicating 
that we can take the union of the tiling given 5 cells up in the table along with a 5 x 28 
rectangle. Notice that the last entry listed in each column is an 1l" strategy. The blank 
entries below it mean that the same 1l" strategy continues for all larger values of m .  We 
use the symbol <= in a similar fashion. 

Note that rectangles described with the 1l" or <= symbols have fault lines . That is, 
they can be partitioned into two rectangles that both have the width or height of the 
original rectangle. Other rectangles will not have such fault lines. For example FIGURE 
2 shows a tiling of a 34 x 33 rectangle, which can be viewed as five subrectangles, one 
in the center and four others forming the boundary. 

We denote such a pinwheel design by P (a ;  b; c; d) where a ,  b, c, and d are defined 
in FIGURE 3 .  

4 t n - b  

r

h
+ a 

l 
-+ m - c  

t -- n - b - d  

1 
m - a  m - a - c  

! m 

t 
c 

- d - n - d

T 
n 

Figure 3 Pi nwheel construction P(a; b; c; d) for an m x n rectang le 
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Here six parameters are needed to deduce all of the relevant lengths . Four of these 
parameters appear explicitly in the pinwheel notation while m and n are suppressed 
since they are given by the cell in the table where the notation appears. 

Finally, we use a type of decomposition to show that the remaining rectangles can 
be tiled. We first show that an m x 12 strip can be tiled for any m � 38 .  Note that 
we can tile an m x 12 rectangle for any even m � 4 using only even tiles by 4k * 1 2  
or ( (4k - 4 )  + 6 )  * 1 2. To accommodate odd values of m ,  first tile a 35 x 12  strip 
using only odd tiles (by 35 * (7 + 5) ) ,  and then append an m x 12  strip with m even. 
Consequently we can tile m x 1 2  rectangles whenever m � 38 .  Thus we can reduce 
n ,  12 at a time, until we reach a value in the range 28 ::: n ::: 39 .  Finally, if m � 47, 
we reduce it until we reach a value whose tiling appears in TABLE 2. The size of the 
reducing strip depends upon the column n lies in. For example, if n is 30 or 36, we 
remove 4 x n strips until the values of m and n are such that the rectangle is given in 
TABLE 2. Similarly, for n = 28 or 35 ,  we remove 5 x n strips ;  for n = 32, we remove 
6 x n strips ; for n = 3 1 ,  33 ,  or 38 ,  remove 10 x n strips ; for n = 34 or 39, remove 
1 2  x n strips ;  finally, for n = 29 or 37 remove 14 x n strips .  In all cases, the process 
terminates when we reach a table entry that assigns a tiling solution. Thus, with the 
exception of the three cases 3 1  x 29 , 33 x 32, and 33 x 33,  every m x n rectangle 
with 28 ::: n ::: m can be tiled. • 

29 x 29 39 X 29 

D • 
4 x 6  5 x 7  

39 x 39 

Figure 4 Th ree rectang les wi th u n usua l  ti l i ng patterns 

Lemma 4 and Theorem 5 imply that all m x n rectangles with both m and n greater 
than 33 can be tiled and the 33 x 33 square cannot be tiled. Hence the minimum value 
of L that satisfies the Putnam problem is 33 .  

Acknowledgments. Preliminary work was supported b y  a National Science Foundation Research Experience for 
Undergraduates Program at the University of Dayton. Thank you to Kim Slawson for assistance with the imaging 
and resolution of FIGURES 1 -4. The authors would also like to thank the referees for their valuable comments. 



3 80 MATH EMATICS MAGAZ I N E  

REFERENCES 
1 .  F. R. K. Chung, E. N. Gilbert, R. L. Graham, and J. H. van Lint, Tiling rectangles with rectangles, this MAG

AZINE 55 ( 1 982), 286-29 1 .  
2 .  Solomon W. Golomb, Polyominoes (2nd. ed.) , Princeton University Press, 1 994. 
3. L. F. Klosinski, G. L. Alexanderson, and L. C .  Larson, The Fifty-Second William Lowell Putnam Mathemati

cal Competition, Amer. Math. Monthly 9 ( 1 992) , 7 15-724. 
4. Peter J.  Robinson, Fault-free rectangles tiled with rectangular po1yominoes, Combinatorial Mathematics, IX 

(Brisbane, 1 9 8 1 ) ,  372-377 . 
5. J. J. Sylvester, Mathematical Questions from the Educational Times 41 ( 1 884), 2 1 .  
6 .  Y. Vitek. Bounds for a linear Diophantine problem o f  Frobenius, J. London Math. Soc. 10:2 ( 1 975) , 79-85. 

Unique Rook Circuits 
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Suppose we have an array of squares, such as on a chessboard, with possibly some of 
them blocked off. A rook tour is a path that visits every empty square exactly once, 
moving at each step to any empty adjacent square (North, South, East, or West, but 
not diagonally) .  We will call a rook tour a rook circuit if it starts and ends on the same 
square. As you can see from FIGURE 1 ,  given an array with a set of forbidden squares, 
there may be: (a) ,  no circuit; (b) and (c), more than one circuit; or (d) , exactly one 
circuit. We are especially interested in this last case. 

EB 
' ' ' ' ' - · · - - · · - - · 

EB 
' ' 

® + - · -
' ' ' ' ' ' 

EB 
' ' 

· - - · + - - · · - - ·  + - - ·  

(a) (b) (c) (d) 

Figure 1 Some exam ples of rook c i rcu its 

How do we justify such statements? If we checker the squares of the array, we see 
that each unit step in a rook circuit goes from a white square to a black square, or vice 
versa. This gives us 

THE PARITY PRINCIPLE . The numbers of black and white squares in a rook cir
cuit must be equal . Moreover, the number of vertical (unit) steps and the number of 
horizontal steps are both even. 

In example (a) the two forbidden squares are both black squares, so there is no hope 
of a circuit, or even a tour. Forbidden squares are indicated by guideposts: Q9 on white 
squares, and ffi on black squares.  

Examples (b) and (c) make it clear that arrays of size 4 x 4 or bigger with an even 
number of squares, none of them forbidden, always have more than one circuit. 
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Example (d) has a unique circuit. This may not be immediately obvious, but i s  easily 
checked using 

THE TWO NEIGHBOR PRINCIPLE. If a square has only two neighbors, then it must 
be visited via those neighbors . 

For example, apply this to corner squares a ,  d, i ,  l, n in FIGURE 2, and also squares 
k and m.  This gives us the 1 1  steps b-a-e-i-j-1-m-n-k-h-d-c, and now squares f 
and g have only two neighbors and the circuit is determined. 

a b c d 

e f g h 

i j ® k 

E9 l m n 

Figure 2 U n iqueness of rook c i rcu i t  

Rook circuit problems originated with Sidney Kravitz who posed Problem 22 1 2  [1 ]  
(see also [2]) .  He asked the readers to  find the unique rook circuit in  FIGURE 3 .  

E9 E9 

® 

® E9 

® E9 

E9 ® E9 

® ® 

® 

® ® 

E9 

E9 E9 

Figure 3 S idney Krav itz's p rob lem:  a 1 0  x 1 5  a r ray with 1 8  p roh ib ited squares 

An open question was : Is there a configuration of fewer than 1 8  prohibited squares 
that forces a unique rook circuit on a 1 0  x 1 5  array? The answer is "Yes," and the 
reader can verify that the configuration given in FIGURE 4, with only 10  guideposts, 
has a unique rook circuit. 

Uniqueness can be exhibited by drawing a path in which every segment is forced. 
The reader wishing to verify uniqueness of the paths in FIGURES 3 and 4 should be 
armed with 

THE CUL-DE-SAC PRINCIPLE. Never draw segments that leave a square with only 
one exit; and 
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® ® ® 

E9 E9 E9 

E9 

® 

E9 

® 

Figure 4 Best known so l ut ion,  w i th 1 0  gu ideposts, for a 1 0  x 1 5  a rray 

THE EARLY CLOSING PRINCIPLE . Never close a circuit unless all squares have 
been visited. 

A 4-corner is a 4 x 4 array of squares in a corner of a larger array. Note that none of 
the configurations with unique rook circuits has an empty 4-corner. The best general 
result we know for rook circuits was found by the second author, namely, 

THE 4-CORNER PRINCIPLE. If there is a unique circuit in an m x n array, then at 
least one square in each 4-corner must contain a guidepost. 

Our proof is tedious even when we omit some steps; can the reader find a shorter 
one? 

Proof Suppose there is an empty 4-corner in an m x n array with a unique rook 
circuit. Our proof amounts to checking each of the finitely many ways in which a cir
cuit can enter and exit the 4-corner; in every case, two circuits will be shown with the 
same exits and entrances, contradicting the uniqueness of the circuit. Parity consider
ations tell us that the circuit will cross the boundary of the 4-corner exactly 2, 4, 6 or 
8 times. The case with two crossings is relatively simple; the one with 6 crossings is 
quite tedious .  Label the exits from a 4-corner as in FIGURE 5 .  

8 

7 

6 

5 

1 2 3 4 

Figure 5 Labe ls  for the exits of a 4-corner 
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Figure 6 Cases { 1 , 7} and { 1 , 4 } 
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First, suppose that the circuit crosses the boundary of  the 4-corner exactly twice. 
Two examples are shown in FIGURE 6, where the crossings are at exits { 1 ,  7} and at 
{ 1 ,  4} . In each case, we see two alternative paths showing that any circuit with those 
prescribed exits is not unique. 

We do not need to consider the case { 1 ,  3 } ,  for example, since 1 and 3 are similarly 
colored squares and a path that enters on one color must leave on the other. Further
more, the counterexamples constructed for exits { 1 ,  4} will also work for { 1 ,  5 } .  Also, 
those for { 1 ,  7} will work for the case {2, 8 } ,  by diagonal reflection. 

In this way we can reduce the cases that still need to be considered to : { 1 ,  2}, {2, 3 } ,  
{2 ,  6} ,  and {3 ,  4 } ,  which we leave to  the reader. 

Now suppose that the circuit crosses the boundary of a 4-corner exactly four times . 
If the exits , listed in numerical order, are a ,  b, e, d, then, to form a single circuit, they 
must be connected ab, ed inside the 4-corner, and ad, be outside, or vice versa. For 
example, if the circuit crosses at exits { 1 ,  2, 3 ,  7 } ,  we need to consider the two cases 
illustrated in FIGURE 7 .  The first is where exits {2, 3} (braced in the figure) and ex
its { 1 ,  7} are connected outside the 4-corner, so that { 1 ,  2} and {3 ,  7} are connected 
inside. In the second, the roles are interchanged, with exits { 1 ,  2} (braced) and {3 ,  7 }  
connected outside. We don' t  need to consider the case where { 1 ,  3 }  and {2, 7}  are con
nected since that would cause the circuit to intersect itself. 

+ - - +  + - - +  
I I I I 
I I I I 
I I I + - - � 

+ - - + 
' 
' 

+ - - + 
' 

+ - - +  + - - +  
I I I I 
I I I I 

+ - - +  + - - �  

' 
+ - - - - - - - - +  

' 
' 

+ - - +  + - - +  
' ' ' 

+ - - - - - - - - +  
' ' 
' ' 
I + - - +  + - - �  

' ' 
' 

+ - - + 
' 
' 

+ - - + 
' 

Figure 7 Cases { { 1 , 7} ,  {2 , 3 } }  and { { 1 , 2 } ,  {3 , 7 } }  

+ - - +  + - - +  
I I I I 
I I I I 
I + - - +  + - - �  
' 
' 
I + - - - - - +  

' ' 
' ' 
I + - - + 
' ' 

We may abbreviate the description of these two cases to abed = 1 237.  Symmetry 
and color considerations reduce our need to consider only the nine cases abed = 1234, 
1237 (above) ,  1246, 1248, 1267, 1278,  1 347, 1467, and 2346, together with four oth
ers , in which exits 4 and 5 are both used. When this happens ,  4 and 5 are necessarily 
connected inside the 4-corner, so the case described above as ad, be is not relevant. 
The outside connections are ab, ed for abed = 1456, 1458, 1 543, and 3456.  Twenty 
more pairs of alternative paths, in addition to the two pairs shown, suffice to complete 
this case. 

If the circuit crosses the boundary of the 4-corner at six places, list them in numeri
cal order as a , b, e, d, e, and f. Then these must be joined in pairs, inside and outside 
the 4-corner, in one of the following five ways: 

ab, ed , ef af, be, de 
ab, ef, de ad, be, ef af, be, ed . 
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I n  order to form a single circuit, the two in the first row must be linked, one inside, 
the other outside, and each of the three in the second row must be linked to one of the 
other two. We consider the type in the second row first: If we appeal to symmetry, we 
need consider only one such complete set of three: 

14, 23, 78 12 , 38 , 47 1 8 , 27 , 34 

Each pairing can be in-out or out-in for a total of six cases . 
The following three pairs of links can be connected to one another in-out or out-in. 

Either one of the third pair can also be an in associated with the out 14, 23 , 67, which 
cannot be used as an in. 

12 ,  34, 67 & 17 ,  23 , 46 12 ,  34, 78 & 1 8 ,  23 , 47 12 ,  37, 46 & 1 7 ,  26, 34 

There are four ins with a unique associated out, that is, in & out = 12 ,  45 , 68 
& 1 8 ,  24, 56 or 1 3 ,  45 , 67 & 17 ,  34, 56 or 16 ,  23 , 45 & 12 ,  34, 56 or 1 8 ,  23 , 45 & 
12 ,  34, 58 and four ins with two possible associated outs : 

1 2, 36, 45 
1 2, 38 , 45 
17 , 36, 45 
1 8 , 26, 45 

with 
with 
with 
with 

14 , 23 , 56 
14 , 23 , 58 
13 ,  47 , 56 
12 , 48, 56 

or 
or 
or 
or 

The assiduous reader will find 22 pairs of alternative paths. 

16 , 25 , 34 
1 8 , 25 , 34 
1 5 , 34, 67 
1 5 ,  24, 68. 

It's hard to visualize how all eight exits might be used, but if they are, then exits 4 
and 5 are again connected inside. So we need consider, apart from reflection, only the 
following outside connections : 

12 , 34, 58 , 67 
12 , 38 , 47 , 56 
18 , 27 , 34, 56 
14, 23 , 58 , 67 
1 8 , 23 , 47 , 56 
12 , 34, 56, 78 

which may be joined in more than one way to form 
a single circuit via the inside connections 16 ,  23 , 45 , 78, 

which have ambiguous inside connections 
via 1 2,36,45 ,78, and finally, 

via 1 8 , 23 , 45 , 67 . 

Just six pairs of pictures for these cases will complete the proof. • 

Related results You might think that a statement similar to the 4-comer principle 
must be true if you consider large enough arrays that are not in a comer, but our 
general results show that no such statement is true: you can have an arbitrarily large 
area of an array without guideposts but with only one circuit ! Moreover, if you look at 
the FIGURE 4, you' ll see that a 3-comer principle can' t  be true. The same figure also 
rules out the statements that a 5-, 6-, or 7-comer must contain two guideposts . It seems 
probable that an S-corner must contain two guideposts but we have made no attempt 
to prove this. 

It 's not too hard to specify exactly how many guideposts there must be to have a 
unique rook circuit on a board with one side of length less than 5 ,  or one that is a 
multiple of 4. 

Rectangles of size 1 x n have no rook circuit, and those of size 2 x n have a unique 
one. 

For rectangles of size 3 x (3n + j)  with n > 0 and j = 0 or ± 1 ,  it is necessary 
and sufficient to use n + j guideposts to enforce a unique circuit. You can check this 
by noting that consecutive posts have to be on squares of opposite colors . One way of 
placing them is 
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for j = 0 ,  put n guideposts at 
j = 1 ,  n + 1 
j = - 1 ,  n - 1  

(3r + 1 , 1 ) 
(3r + 1 ,  1 )  

(3r, 1 )  

for 0 _::::: r < n 
O _::::: r _::::: n 
0 < r < n .  

I I  �I bi l l  bl l �I I bl I �I I �I I �I I bl 
Figure 8 Find the u n ique rook c i rcu i ts 

It is curious that, in order to force a unique rook circuit on a 3 x n array, about 1 /9 
of its squares need to be occupied by guideposts, whereas larger boards require smaller 
fractions . Rectangles of size 4 x n only need 2 guideposts , if you place them either at 
( 1 ,  1 )  and at (n-1 , 2) or (n- 1 ,  3) according as n is even or odd. 

Figure 9 Check that the rook c i rcu its a re u n ique 

If one dimension of the rectangle is a multiple of 4, say 4m , then 2m guideposts 
suffice, if you stack m copies of the 4 x n examples that we've just seen. For example, 
the standard 8 x 8 chessboard has a unique rook circuit if 4 guideposts are placed as 
in FIGURE 1 0 . 

0 
EB 

0 
EB 

Figure 1 0  Check that the c i rc u it i s  u n i que 

We are less certain of the minimum number of guideposts if the dimensions of the 
rectangle are 4m + i by 4n + j ,  with m ,  n > 0 and i ,  j = 1 ,  2, or 3 .  We believe them 
to be 

2(m + n) - 1 
2(m + n) 

2(m + n) + 1 

if ij = 1 
if ij is even 

if ij = 3 or 9 

(first diagram of FIGURE 1 1 ) 
(next three diagrams) 

(last row of FIGURE 1 1 ) 
The fact that these numbers suffice is illustrated by the six diagrams of FIGURE 1 1 : 
for m = n = 2 and (i , j )  = ( 1 ,  1 ) ,  ( 1 ,  2) (first row); (2, 2) , (2, 3) (second row); (3 , 1 ) ,  
(3 , 3 )  (last row) . For the cases ( i ,  j )  = (2, 1 ) ,  ( 3 ,  2) , or ( 1 ,  3 ) ,  reflect the appropriate 
diagram about its rising diagonal. 
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(i , j )  = ( 1 ,  1 )  ( i ,  j) = ( 1 ,  2) 

® E9 ® E9 ® E9 

® E9 

® E9 

( i ,  j )  = (2, 2) ( i , j) = (2, 3) 

® ® ® 
E9 E9 E9 

E9 

® 

E9 

® 

(i , j )  = (3 , 1 )  ( i ,  j )  = ( 3 ,  3 )  

E9 
® 

® ® ® 
E9 

® ® 
E9 

E9 E9 ® ® 

Figure 1 1  F i nd  the u n ique rook c i rcu i ts 
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In each diagram the framed (4m + i )  x 4 and 4 x (4n + j)  rectangles each contain 
2 guideposts, one of each color. These may be deleted (in order to reduce m or n to 1 ) , 
or replicated (to cover cases where m or n is greater than 2) producing rectangles of 
different height or width. Enjoy verifying the uniqueness of the rook circuit in each 
case. Here are some other problems. 

1. Force unique circuits on nonrectangular boards. 
2. Force unique circuits on different tilings, for example, triangular and hexagonal. 

Hamilton might have wondered about the dodecahedron or icosahedron: here, 
should rotations and reflections be counted as different? 

3 .  What if the array of blocks is a tiling of a torus, a cylinder, a Mobius band, a Klein 
bottle, or a projective plane? 

4. What is the maximum number of nonadjacent squares that you can block from an 
array and still permit a rook circuit? 

5. Study analogs of rook circuits on chessboards of dimension three or higher. 

Acknowledgments. Special thanks to Sidney Kravitz, Loren Larson, and Bill Sands for various insights. 
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30 Years Ago in the Magazi ne 

From "Who Reads the Mathematics Magazine?" by L. J. Cote and R. P. 
O' Malley, Purdue University, 45:5  ( 1 972), 273-278. 

Who reads MATHEMATICS MAGAZINE? For the most part, teachers in uni
versities or colleges not granting the Ph.D. in mathematics, who read and 
enjoy the Problem Section regularly, who are interested in book reviews, 
and who probably tend to choose which articles they will read by scan
ning the list of titles on the cover to choose those they think they will find 
most interesting. The other two groups of teachers seem to be quite similar 
to this group. The surprisingly large group of nonacademic subscribers is 
also similar to the teachers . . . .  

Readers are encouraged to send their comments about the MAGAZINE to 
mathmag@ scu.edu. Is there interest in another survey of readers? 
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Proof Without Words: Non negative I nteger 
Solutions and Triangular Numbers 

M A T T H E W  j .  H A I N E S 
Augsbu rg Col l ege 

M i n neapo l i s, MN 5 5454 

M I C H A E L  A.  J O N E S 
Montc l a i r  State U n iversity 

U pper Montc l a i r, Nj 07043 

(i + k - n) + (n - k + 1) + (j + k - n) 
(0, 0 , n) 

i + k - n  :�- k j + k - n y � j  
___,._.�--���--��--..,._��--��r-jil..,..- z = k 

(n , 0, 0) (0, n , 0) 

For i ,  j ,  and k integers between 0 and n inclusive, the number of nonnegative integer 
solutions of 

x + y + z = n  

is 

where Tm is the mth triangular number: 

Tm = 0  

m ::::: 0 

X �  i y � j  

• 
• • • 

• • • • • 
T3 = 6 

z � k ,  
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Encryption Using a Variant of the 
Turning-Grille Method 

S T E P H E N  F R A T I N I  
50 Ma l i bu Drive 

Eatontown, NJ 07724 

In his De Subtilitate [1], the sixteenth-century mathematician Girolamo Cardano intro
duced a new method of encryption/decryption. To read an encrypted text, a square grid 
(or grille) with the correct openings was placed over the text to reveal the decrypted 
message. Variants of this technique were used as late as the mid-twentieth century. For 
example, German intelligence used a grid-based encryption in South America during 
World War II. In this note, we present other variants of this method and describe some 
modern encryption techniques in conjunction with grids. 

By a grid we will mean a rectangular array that covers a rectangular text (of the 
same size) with small openings or cutouts in various places. The dimensions of a grid 
determine the number of characters that it can cover. For example, a 1 6  x 1 6  grid can 
cover 1 6  lines of text, each line having 1 6  characters. In Cardano's method, we place 
a grid over a blank piece of paper and write the characters of our message in the grid 
openings. The grid is lifted off the paper and random characters are added around the 
message, thereby creating a rectangular block of text of the same dimension as the 
grid. The intended recipient of our message also has an exact copy of the grid used to 
encrypt the message. The message recipient places his or her grid over the block of 
text and the message appears through the grid openings .  

A variant of Cardano' s approach uses rotations of the grid to introduce encoded text 
more compactly than in the original approach. For example, in FIGURE 1 ,  we show 
an 8 x 8 grid with 1 6  openings.  When placed over an 8 x 8 text, this grid exposes 
16 characters. If we rotate the grid 90° in the clockwise direction and again place the 
grid over the selection of text, a different set of 1 6  characters is shown. Two more 
rotations of 90° will expose two more sets of 1 6  previously covered characters. The 
8 x 8 squares of FIGURE 1 are in four groups of 1 6  squares, and the numbering in each 
quadrant is rotated 90° clockwise each time. Using this numbering, we see that each 
of the 1 6  openings (under each rotation) has a distinct number (from 1 to 1 6) .  This 
ensures that all of the 64 squares of the text will be uncovered in a unique rotation of 
the grid. Text can be put in encrypted form after each rotation, so that the entire 8 x 8 
array may contain up to 64 characters of (encrypted) text, without needing to insert any 

1 

5 

9 

1 3  

4 

3 

2 

1 

2 3 4 1 3  9 5 

6 7 8 1 4 1 0  6 

1 0 1 1  1 2  1 5 1 1  7 
r--

1 4 1 5 1 6  1 6  1 2  8 

8 1 2  1 6 1 6  1 5 1 4 

7 1 1  1 5 1 2  1 1  1 0  

6 1 0  1 4 8 7 6 

5 9 1 3  4 3 2 

Figure 1 An 8 x 8 gr id 
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random characters. This encoding technique is referred to as the turning-grille method. 
For further reading, we recommend the excellent introductions to the turning-grille 
method and its associated history in the books by Gardner [3] and Kippenhahn [5] . 

Example: the 'fuming-Grille Method Consider the following phrase: 

THE CONCEPT OF USING GRIDS TO ENCODE MESSAGES WAS FIRST 
DISCOVERED BY THE MATHEMATICIAN GIROLAMO CARDANO 

We arrange the characters of the message in 8 rows of 8 characters (blank spaces 
between words are removed) . If there are more than 64 characters, we use additional 
8 x 8 arrays until all the text has been encoded. 

The plaintext (that is, unencrypted text) is inserted into the arrays as suggested by 
FIGURE 2 from left to right, and from top to bottom, starting with the array on the left 
and then placing the remaining characters into the array on the right. Next, we place 
the grid shown in FIGURE 1 over the left array and read off the characters appearing 
through the openings (again, we go from left to right, and from top to bottom) . We 
repeat the procedure after rotating the grid 90° , 1 80° , and finally 270° , and then go 
through the entire process again for the array on the right. 

T H E c 

p T 0 F 

G G R I 

E N c 0 

s s A G 

s F I R 
s c 0 v 

B y T H 

0 N c E H E M A 

u s I N A N G I 

D s T 0 M 0 c A 

D E M E 0 

E s w A 

s T D I 

E R E D 

E M A T 

Figure 2 Encod i ng with an 8 x 8 gr id  

T I c I 
R 0 L A 

R D A N 

There are several approaches that we can use when the last block of plaintext does 
not fill the grid: fill the grid with dummy text, partially fill the grid with dummy text, 
or do not add any fill. We' ll use the no-fill method in this example. For readability, 
we present the encoded text in groups of four. The actual coded message would be 
transmitted without spaces. The following encoding is obtained: 

TTOS NSOE GRIV EDHE EITE NCOS SSTD YTMA COPF UGDD ASIS ORET 
HENC GRIM EESW AFCB 

HNGO ADNI LAOA TAIR MREM ICOC A 

Of course, both the encoding party and the decoding party need to know how the 
characters are placed into the arrays and how the characters are read off when the grid 
is in place. 

To decode the text above, we place the grid in FIGURE 1 over a blank array. Starting 
from the left of the top line of text, the characters are written into the openings of the 
grid (from left to right, and from top to bottom) . The process is repeated for grid 
rotations of 90° , 1 80° and 270° . For the second line of encoded text, the procedure is 
slightly different. We first note that the text will fill only the first three rows and the 
first entry in the fourth row (this will be referred to as the covered region) . No text 
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should be inserted into a grid opening outside of the covered region. Other than this 
stipulation, the procedure is the same as the case where the text completely fills the 
array. 

We shall call a complete grid one that exposes all of the characters of a selection of 
text exactly once when successively rotated over the text. The grid shown in FIGURE 1 
is an example of a complete grid. Note that this condition implies that in order for an 
n x n grid to be complete, n must be an even integer. 

The turning-grille method does have weaknesses. First, when the complete-fill 
method is used, an interloper may be able to detect the grid size of the code from the 
sizes of the intercepted messages. This weakness can be overcome by using no-fill 
or partially-filled grids in order to disguise the size of the grid. A second weakness 
arises when several adjacent openings appear in a row or column. Adjacent openings 
can expose entire words or parts of words, and a code breaker could try to determine 
the arrangement of the openings from this information. Third, for smaller grids, a 
would-be code breaker could easily try all possibilities. For example, we will show 
there are only 65 ,536 different 6 x 6 grids. Of course, this problem can be remedied 
by using a larger grid. In the next section, we provide a formula for the number of 
grids of a given dimension. 

The difficulty of breaking a code In order to estimate the difficulty in breaking 
these codes we will count the number of possible grids for a given dimension. The 
more possible grids there are, the longer it would take to break the code by exhaustively 
checking each possible grid. 

Grids of the same dimension differ in the location of their openings .  If one grid 
can be rotated clockwise so that it has openings in the same position as another, we 
say the two grids are equivalent. Since we use the turning-grille method, we'll only be 
interested in counting the number of equivalence classes of complete grids. 

Let's consider the 8 x 8 example again. From our earlier discussion, we know that 
in order to determine a complete grid, it is sufficient to assign to each integer from 1 
to 1 6  the unique quadrant in which it appears in FIGURE 1 .  Each number from 1 to 1 6  
appears exactly once in each quadrant, s o  choosing one quadrant for each integer will 
guarantee that every square of the array is uncovered in exactly one of the rotations of 
the grid. Since each integer has four possible quadrants to which it can be assigned, 
and the assignments for each integer can be made independently, it follows that there 
are 416 such choices. However, any one such choice will be equivalent to three other 
choices, one for each rotation. So, the total number of equivalence classes of complete 
grids is 416/4 = 415 • 

In general, we see that each quadrant of an n x n array contains (n /2)2 squares 
(where n is even). So, we need to assign quadrants to the integers 1 to (n/2)2 ,  and 
divide by 4 to account for equivalent grids, resulting in 4<nf2l2- 1  equivalence classes of 
complete grids . 

It's worth noting that complete grids for n x n arrays where n is an odd integer 
are not entirely impossible. In using such an array, there will be one square in the 
center of the array that will be fixed by every rotation. Simply excluding its use in 
the encoding and decoding process, we can again determine four distinct (though non
square) quadrants to which we can apply the turning-grill method. As an exercise the 
reader should show that the number of equivalence classes of complete n x n grids, 
for n odd (with the center excluded) is 4k- I , where k = ( nil ) ( n2 I ) . 
Linear grids We now consider a variant of the square grid called a linear grid. A 
linear grid is a linear array of squares that is divided into pieces of equal lengths called 
sectors, with openings or cutouts appearing at different locations along the grid. These 
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sectors take on the same role as the quadrants in square grids, s o  that a linear grid will 
never contain more openings than the common length of its sectors . The top row in 
FIGURE 3 depicts a linear grid with sectors of size 5 (double lines are used to show the 
boundary between sectors) .  We will always assume the length of a sector is at least 2. 
The role of a rotation in square grids is replaced by a shift. A shift moves the openings 
of a sector over to the sector to its immediate right. The openings of the last sector of 
the grid are then shifted to the front on the first sector (the second row in FIGURE 3 is 
the result of applying one shift to the first row) . 

I I  I 2 I 3 I 4 5 II � 2 3 I 4 I 5 I I � 2 3 I 4 I 5 I 2 I 3 I 4 5 
I 2 I 3 I 4 5 I 2 3 I 4 I 5 II � 2 3 I 4 I 5 2 3 4 I 5 I 

Figure 3 Sector sh ift ing i n  a l i near gr id  

We can create sectors of any size. FIGURE 4 shows a linear grid with 6 sectors, 
where each sector has 5 elements . A linear grid consisting of m sectors with each 
sector having n elements is said to have dimension m x n .  

I ,  EJ 3 I 4 I 5 Il l I 2 I 3 I 4 I 5 [I] 2 EJ 4 I 5 Il l I 2 I 3 I 4 I 5 I l l I 2 I 3 I 4 I 5 II ' I 2 I 3 1 4 1 5 I 
Figure 4 L i near gr id  w ith 6 sectors each of s ize 5 

Two linear grids of the same size are said to be equivalent if one grid can be trans
formed into the other by shifting the grid one or more times. In general, there are m n -1 

equivalence classes of linear grids of dimension m x n ,  where m 2: 2 and n 2: 2. This 
result is easy to prove using the ideas developed in the square grid case. In an m x n 
linear grid, n denotes the length of the sector (and consequently the number of open
ings in the grid), so that in order to determine such a grid, we need to assign one of 
the m possible sectors to each integer from 1 to n .  Like the square grid case, these 
can be assigned independently, so there are m n such choices, but each of the m shifts 
of any single grid determines an equivalent grid. Thus, there are only m n -1 distinct 
equivalence classes of linear grids. 

Permutations The encoding process determined by a linear grid also determines a 
permutation on the set of characters of the text. In this way we can regard the set of 
m x n linear grids as a subset of the set of permutations of degree mn. As an example, 
consider the permutation generated by the 4 x 4 linear grid shown in FIGURE 5 .  

1 �  l 2 l 3 1 4 1 1 �  1 2 1 3 1 4 1 1 �  1 2 1 3 1 4  11 � 1 2 1 3 1 4 1  
Figure 5 Examp le  of a 4 x 4 l i near gr id  

The sequence of text 

2 3 4 5 6 7 8 9 10 1 1  12 13 14 15 16 
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is mapped to 

7 1 2  14 2 5 I I  1 6  4 6 9 15 3 8 10 1 3  

I I T I F I R II T I N I E I I I I I I K I E I E  II H I H I R I 0 I 
2 3 4 5 6 7 8 9 1 0  I I  1 2  1 3  14 1 5 1 6  

In  permutation notation, this mapping can be  represented as ( 1 2 
a =  1 5 

3 4 5 
1 3  9 6 

6 7 
10 2 

8 
14 

9 
1 1  

10 
15  

1 1  
7 

12  
3 

1 3  
16 

14  
4 

1 5  
12 

16) 
8 . 

We can apply the encoding process several times (say p times) to a text. To decode 
the message the receiving party must apply the decoding technique p times. Alge
braically, this means that if a linear grid determines a permuation a ,  and is applied 
p times, this is equivalent to applying the permuation a P , and the decoder must ap
ply a -P . Clearly p must not be a multiple of the order of the permutation, otherwise 
the encoding would map the selection of text to itself! 

Finally, we note that a partially filled grid gives rise to a different permutation 
than the same grid when completely filled, in terms of the size of the permuta
tion and the actual mapping. If, for the grid shown in FIGURE 5 ,  only the first 1 2  
places are filled, w e  generate the following permutation (written in cycle notation) : 
( 1 ) (2 ,  4, 7) (3 ,  10 , 12) (5) (6, 8 ,  1 1 ) (9) ,  which is different from a .  

Code parameters In order for two parties to have secure communications they need 
to agree on their encryption technique (e.g. ,  linear grids), the initial parameters as
sociated with the code (e.g. ,  the dimension of the linear grid and the location of the 
openings), how often these code parameters are to be changed (e.g. ,  every 3 days), 
and how to indicate a change to the code parameters (sometimes referred to as key 
distribution) . 

Clearly one might never change the code parameters, or change them according to 
a fixed, pre-set schedule. Another approach is to embed the code parameters in the 
message itself. This way one can change the encoding technique at any time. 

We will assume some initial choice of code parameters has been made between 
the sender and receiver. In order to specify within the message a change in the code 
parameters, we need to indicate within this message the dimension of the grid and the 
location of the openings.  One method would be to insert the grid description into a 
selection of dummy text (or into the actual message). For example, consider the 4 x 6 
grid shown in FIGURE 6 . 

We will use the dummy text: "THE YANKEES WON THE WORLD SERIES ." 
Two consecutive letters of the dummy passage will indicate the end of a sector, and 
one letter will separate the numbers indicating the location of an opening within a 
sector. Since there may be multiple sectors without openings at the end of the grid, 
it is necessary to indicate the end of the grid description. This is done by placing any 
single-digit number after three characters of the dummy passage. Using this technique, 
the code parameters for the grid shown in FIGURE 6 can be represented as 

T4HE 2Y3A N6KE lESS W07NT HEWO RLDS ERIES . 

A similar embedding technique can be defined for square grids. 

1 �  I 2 I 3 1 4  I 5 I 6 1 1 � 1 2  I 3 1 4  I 5 I 6 11 � I 2 I 3 I 4 I 5 1 6  11 � l 2  I 3 I 4 I 5 1 6  I 
Figure 6 A 4 x 6 l i near gr id 



3 94 MATH EMATICS MAGAZI N E  

There are still two problems with this procedure. If the current key is discovered, 
then all subsequent keys can be deciphered (assuming the code breaker can determine 
how the keys are embedded in the message) . Secondly, selection of the linear grid's  
dimension and the configuration of openings is not automated. In the next section, we 
will see how modem encryption techniques can be used to solve these two problems. 

Applying modern encryption techniques Modem encryption makes extensive use 
of public keys and binary representation of encoded messages. We shall demonstrate 
how both of these concepts can be used to strengthen the security of linear grids.  

Key distribution was a major problem for all encryption techniques until the latter 
part of the 20th century. This changed in 1976 with the discovery of a key exchange 
method that allowed two parties to establish a secret key via a public discussion [2] . 
The key distribution procedure is known as the Diffie-Hellman key exchange scheme. 
This scheme depends on a modular arithmetic function of the form A 8 (mod C) where 
A ,  B and C are positive integers, C is a large prime (a 1024-bit number or larger), and 
A :S C. Further, A should be selected so that the powers of A generate all elements 
from 1 to C - 1 ,  modulo C .  

We now give a brief example of  how the Diffie-Hellman key exchange works. For 
simplicity, we use a small value for C .  

1 .  Two parties wishing to communicate securely (say Abe and Bea) agree on values 
for A and C (say A = 5 1  and C = 53) .  A and C are referred to as public keys. The 
value of A and C need not be kept secret. 

2. Abe and Bea each select a private key. No one except Abe knows Abe's private key, 
and no one except Bea knows Bea's private key. Let Abe's private key be x = 7 and 
Bea's private key be y =  5 .  

3 .  Abe computes L = Ax (mod C) = 5 t 1 (mod 53) = 3 1 .  Bea computes M = AY 
(mod C) = 5 1 5 (mod 53) = 2 1 .  Abe and Bea exchange their results. The values of 
L and M need not be kept secret, since they are not the key to the code. 

4.  Now Abe computes 2 F (mod C) = 2 1 7 (mod 53) = 35,  and Bea computes 3 P  
(mod C) = 3 1 5 (mod 53) = 35 .  At this point, Abe and Bea have determined a 
common key. 

Any two parties using the above procedure always arrive at the same key since 

The function used in the Diffie-Hellman key exchange, that is, f (x) = Ax (mod C) , 
is called a trapdoor one-way function. A function is called one-way if it is significantly 
easier to evaluate than is its inverse. A trapdoor one-way function is a one-way function 
in which the inverse is easy to compute if certain secret information (referred to as the 
trapdoor) is available. The private keys in the Diffie-Hellman key exchange are the 
trapdoor. 

For large values of C (that is, at least 1024 bits), solving for the private keys is 
considered computationally difficult (that is, practically impossible) . At present, no 
one has discovered an algorithm that solves the general discrete logarithm (the function 
needed to invert the one-way function in the Diffie-Hellman exchange) in polynomial 
time. In fact, the U.S .  government's Digital Signature Algorithm (DSA) is based on a 
variant of the Diffie-Hellman key exchange [6] . 

We can use the Diffie-Hellman procedure to exchange keys instead of the key 
embedding technique described in the previous section. There is one complication, 
however. The Diffie-Hellman exchange produces an integer and not a description of a 
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linear grid. We solve this problem by defining an ordering on the set of  all linear grids, 
and will use the grid and code parameters associated with the location in the ordering 
determined by the integer produced by the Diffie-Hellman exchange. 

The ordering is defined in two steps. First, we order the dimensions of the set of 
linear grids and then we order the (finite set of) linear grids within a given dimension. 
FIGURE 7 illustrates how the various dimensions are to be ordered. The first grid is 
(2, 2) , followed by (3, 2) and (2, 3) ,  and then (4, 2) , (3 , 3) ,  and (2, 4) , etc . 

/.(2,2) 
(3;2) / (4,2) 

/ (5,2) 
/(6,2) 

.. /(7,2). 
. / : : :  

• • 
(2;3) .. 
(3;3) 

.. · (4,3) 
/(5 3) 

(6,�) .. 
\1,3) 

. . . 

(2:4) 
(3;4) 
(4,4) 
(5,4} 
(6,4) 
(7,4) 

. . .  

(2:5) 
(3;5) . (4;5) 
(5,5) 
(6,5) 
(7,5) 

. . . 

(2;6) / (2)) . . .  
(3;6) (3,7) . . .  
(4,6) (4,7) . . .  
(5 ,6) (5 ,7) . . .  

(6,6) (6,7) . . . 

(7,6) (7,7) . . .  
. . .  . . .  

Figure 7 Order ing  of l i near gr id  d i mens ions 

Next, we define an ordering of the set of linear grids of the same dimension. Given 
two sectors within a particular grid, we' ll say the sector with more openings is greater 
than the other. If two sectors have the same number of openings, then the sector with 
the opening in the highest number (furthest to the right in the sector) is greater than 
the other sector. There cannot be a tie since each slot opening appears in exactly one 
sector of a given linear grid. In this way, we can create an ordering of the sectors 
within a grid. Now take each linear grid and shift the sectors such that the greatest 
sector appears farthest to the left. Effectively, we are selecting one representative from 
each equivalence class .  We write each linear grid in the form a = (a1 , a2 , . . .  , an ) ,  
where a1 i s  the greatest sector. Given two linear grids of the same dimension, that 
is, a =  (a1 , a2 , . . .  , an ) and b = (b1 , b2 , . . . , bn ) ,  we say that a > b if ai > bi for the 
smallest i such that ai =f=. bi . This completes the ordering of all linear grids. For a given 
integer N ::': 1 ,  we can map N to the Nth linear grid in the ordering. 

Modem computers use binary format, and encryption is performed on the bits, not 
the characters . For linear grids, we can represent the text in binary format and place 
bits, as opposed to characters, into the grid. This approach has the advantage of limiting 
the appearance of word fragments in the encrypted text. For example, when characters 
are placed into a grid, two adjacent openings expose two-letter word fragments . How
ever, when we place bits into a grid, it takes 14 successive openings to expose two 
adjacent characters, using the standard 7-bit ASCII format. 

For further reading, the book by Singh [8] provides an excellent historical overview 
of cryptography. A detailed description and analysis of modem encryption techniques 
can be found in Applied Cryptography [7] and the textbook by Kaufman, Perlman, and 
Speciner [ 4] . 

Coding-breaking challenge We leave the reader with a passage of text that has been 
encrypted with a 5 x 1 3  linear grid. 

WCOD LCKF HUCV TWOD OHUH KCUK YHHC ODCU IOOU ODFM UHUC 
KAWC OCHW OAWO CDCL DORG B 

The decrypted passage can be found on page 398. 
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Math Bite: Axial View 
of Trigonometric Functions 

M. V A L l  S I A D A T  
Richard j .  Daley Col lege 

C h icago, IL 60652 

A typical way to picture the sine and cosine functions is shown in FIGURE 1, where a 
given central angle e appears in its standard position in the unit circle of the Cartesian 
plane. Since the horizontal distance OM is cos e ,  we may loosely call the horizontal 
axis the cosine axis. Similarly, the vertical distance OL is sin e and so the the sine 
function is associated with the vertical axis .  An advantage of this approach is that 
students can reliably determine the correct signs for these ratios when e is outside the 
first quadrant. You may be familiar with similar axes associated with the tangent and 
cotangent functions, but have you ever thought of a secant axis? 

sin tan 

sec / esc 

Figure 1 An ang le  i n  standard pos it ion i n  the fi rst quadrant 
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Consider the directed lines perpendicular to the coordinate axes at N ( 1  ,0) and J (0, 1 ) ,  
oriented in  the same way as the axes to which they are parallel. Since tan () = QN and 
cot () = JK, these axes could be called the tangent axis and cotangent axis .  Positive and 
negative values of the tangent and cotangent functions will be determined correctly 
when read from these axes, as you can check in FIGURE 2 .  

S8C / CSC 
sin tan 

Figure 2 The second quadrant 

To represent the secant and cosecant functions, we use the directed line that forms 
the terminal side of () .  While this axis does move as () changes, the values of the secant 
and cosecant functions can be read off as lengths along it. In particular, sec () = OQ 
and esc () = OK. Thus, the intersection of this sec/esc axis with the tangent axis deter
mines the secant, and its intersection with the cotangent axis determines the cosecant 
of the angle . As you can see, in the first quadrant sec () and esc () are both positive, 
since they are both measurements along the positive side of sec/esc axis. In the third 
quadrant, the intersection of sec/esc axis with the tan and cot axes both occur along 
the negative side of the sec/esc axis and so sec () and esc () are both negative. 

In the second quadrant (FIGURE 2), the intersection of the sec/esc axis with the 
tangent axis occurs along the negative side of the sec/esc axis and the intersection with 
the cotangent axis occurs along its positive side. As a result, sec () is negative and esc () 
positive in this quadrant. Finally, in the fourth quadrant, the intersection of the sec/esc 
axis with the tangent axis occurs along the positive side of the sec/esc axis, and with 
the cotangent axis along its negative side. Thus, sec () is positive and esc () is negative 
in this quadrant. 

The axial view delivers the correct answer for exceptional angles where some of 
the trigonometric functions are undefined: the sec(:rr /2) does not exist, and the sec/esc 
axis does not intersect the tangent axis .  Overall, this visual interpretation should help 
students develop an intuitive sense of the magnitudes and signs of trigonometric func
tions .  

Acknowledgment. I would like to  thank John Woods for helping with the drawings, and thank the referees for 
their helpful comments. 
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Proof Without Words: 
The Cosine of a Difference 

The area of the white rhombus is cos(a - {3) .  

sin(a) 

cos (a - {3)  = cos (a) cos (f3) + sin(a) sin(f3) 

With inspiration from Priebe and Ramos .  

--WILLAM T. WEB B ER AND MATTHEW B ODE 
WHATCOM COMMUNITY COLLEGE 

23  7 KELLOGG ROAD 
B ELLINGHAM, WA 9 8 226 

REFERENCE 
I .  V. Priebe and E. A.  Ramos, Proof without words: the sine of a sum, this MAGAZINE 73:5 (2000), 392. 

Answer to decrypt ion prob lem from page 3 9 5 :  
The text was placed into a 5 x 1 3 linear grid with openings in the 3 ,  6 ,  10, and 1 1  
slots of the 1 st sector, in the 2 slot of the 2nd sector, in the 4, 5 ,  and 7 slots of the 
3rd sector, in the 1 ,  1 2, and 1 3  slots of the 4th sector, and in the 8 and 9 slots of 
the 5th sector. The text was placed into the linear grid from left to right, and the 
characters were read from the openings going left to right. The text RFVTGBYH 
was used to fill the remaining cells of the grid. 

HOW MUCH WOOD COULD A WOODCHUCK CHUCK IF A 
WOODCHUCK COULD CHUCK WOOD RFVTGBYH 
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Proposa l s  
To be considered for publication, solutions should be received by May 1, 2003.  

1657. Proposed by Elias Lampakis, Messina, Greece. 

Let h denote the j th Fibonacci number U1 = fz = 1 and fn+2 = fn+I + fn ) . 
Prove that for each positive integer n ,  there is a positive integer k and integers 
ah az ,  . . .  , ak E { 1 ,  2} such that n = "£�=! aj h ·  

1658. Proposed by William Gasarch, Department of Computer Science, University of 
Maryland, College Park, MD. 

Let n and d be integers with 0 � d < n .  Find all polynomials P of degree d such 
that 

t<-ok (n) P (k) = f:<-1l P (�) . 
k=O k k=O k .  

1659. Proposed by Erwin Just (Emeritus) and Norman Schaumberger (Emeritus), 
Bronx Community College, Bronx, NY. 

Assume that pentagon A 1 A2A3A4A5 is cyclic and that A 1 A2 is parallel to A3A4 • 
Prove that 

1660. Proposed by Michel Bataille, Rouen, France. 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 
undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 
information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 
succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of Math
ematics, Iowa State University, Ames, lA 500 1 1 ,  or mailed electronically (ideally as a IbT.EX file) to 
ehj ohnstCOiastate . edu . All communications should include the reader's name, full address, and an e-mail 
address and/or FAX number. 
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In triangle ABC,  let a = B C,  b = C A ,  and c = AB .  Prove that 

b + c  c + a  a + b 9 
-- cos A + -- cos B + -- cos C > ----

a2 b2 c2 - a + b + c 

1661. Proposed by GOtz Trenkler, Dortmund, Germany. 
Let P and Q be two n x n complex orthogonal projectors , that is, P = P* = P2 

and Q = Q* = Q2 • Prove that P Q is an orthogonal projector if and only if P Q is 
normal, that is ,  if and only if (P Q) * P Q = P Q (P Q) * . 

Qu ick ies 
Answers to the Quickies are on page 404. 
Q925. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canada. 

Evaluate the determinant 

y+z X X 
X y +z y +z 

_Y_ z +x ...l.... 
z +x )' z +x 
_L _L x +y 
x +y x +y 

Q926. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta, 
Canada. 

Find the maximum value of 

sin2 (2A) + sin2 (2B) + sin2 (2C) + 2 cos (2A) sin(2B) sin(2C) 

+ 2 cos(2B) sin(2C) sin(2A) + 2 cos (2C) sin(2A) sin(2B) ,  

where A ,  B ,  C are the angles of a triangle ABC . 

So l ut ions  
Palindromic Compositions December 2001 

1633. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn NY. 
A palindromic composition of a positive integer n is a palindromic finite sequence 

of positive integers whose sum is n .  As examples, 1 ,  2, 2, 1 and 2, 1 ,  1 ,  2 are different 
palindromic partitions of 6, and 1 0, 3 ,  1 0  is a palindromic partition of 23 . Find the 
number of palindromic compositions of the positive integer n .  
Solution by Malinda Roth, student, Westmont College, Santa Barbara, CA. 

The number of palindromic compositions of the positive integer n is 2 Ln/2J .  If 
we represent the integer n as a string of n 1 s ,  then each composition can be repre
sented by inserting commas between some of the 1 s .  For example, the arrangement 
1 1 , 1 ,  1 ,  1 ,  1 1  represents the composition 2, 1 ,  1 ,  1 ,  2 of 7. Because the composi
tions are to be palindromic, any distribution of commas must be symmetric about the 
midpoint of the string of 1 s .  If n is odd, then there are n - 1 spaces between 1 s, and 
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any symmetric distribution of  commas i s  completely determined by the placement of 
commas in the first (n - 1 ) /2 = Ln/2J spaces. There are 2 Ln/2J ways to select spaces 
for the commas . If n is even, then again there are n - 1 spaces between 1 s .  A sym
metric placement of commas is determined by the placement of commas in the first 
(n - 2)/2 + 1 = n/2 = Ln/2J spaces between 1 s .  As before, there are 2 Ln/2J different 
ways to select spaces for the commas . 

Note: R. S .  Tiberio of Wellesley, MA noted that this problem also appeared as Problem 
1026 in the January 1 979 issue of the MAGAZINE . See Vol .  53 ,  No. 1 ,  page 55 . 

Also solved by Michael Andreoli, The Assumption College Problems Group, Herb Bailey, Roy Barbara 

(Lebanon), Michel Bataille (France), J. C. Binz (Switzerland), Dorothee Blum, Jean Bogaert (Belgium), David 

W. Carter, Eddie Cheng, John Christopher, Con Amore Problem Group (Denmark), R. Flores Coombs (Chile), 

Robert DiSario, Daniele Donini (Italy), Mike Engling, Fejentalaltuka Szeged Problem Solving Semigroup (Hun

gary), FGCU Problem Group, Ralph P. Grimaldi, Jerrold W. Grossman, Joel D. Haywood, Mack Hill, Brian 

Hogan, Heather Heston, Jerry G. Ianni, The Ithaca College Solvers, Gerald T. Kaminski and Robert L. Raymond, 

Koopa Tak-Lun Koo, Victor Y. Kutsenok, La Salle University Problem Solving Group, Kenneth Levasseur; David 

Levitt, Marvin Littman, Kevin McDougal, Perry and the Masons Solving Group (Spain), Rob Pratt, Leon Quet, 

Alex Rand, Joel Schlosberg, David Seff, Nicholas C. Singer; Skidmore College Problem Group, W. R. Smythe, 

David Treat, David Trautman, Michael Woltermann, Li Zhou, Seth Zimmerman, and the proposer. There was one 

incorrect submission. 

A Constant for an Inequality December 2001 
1634. Proposed by Constantin P. Niculescu, University of Craiova, Craiova, Roma
nia. 

Find the smallest constant k > 0 such that 

ab be ca 
---- + + < k (a + b + c) 
a + b + 2c b + c + 2a c + a + 2b -

for every a ,  b ,  c > 0. 
A composite of solutions from Michel Bataille, Rouen, France; Daniele Donini, Berti
noro, Italy; Junhua Huang, Hunan Normal University, Changsha, China; and Li Zhou, 
Polk Community College, Winter Haven, FL. 

The smallest such value of k is 1 I 4. First note that for x ,  y > 0, 

1 4xy 1 (x + y) 2 1 1 ( 1 1 ) 
X + y 

= X + y 
. 
4xy ::'S X + y 

. 
4xy 

= 4 � + y ' 
with equality if and only if x = y .  We then have 

ab be ca 
---- + + ----a + b + 2c b + c + 2a c + a + 2b 

< 
ab (

-
1 

+ _
1 ) 

+
be (

-
1 

+ _
1 ) 

+ 
ca (-1 

+ _
1 ) 

- 4 a + c b + c  4 c + a  b + a  4 c + b  a + b 
1 = 4 (a + b + c) ,  

with equality if and only if a + b = b + c = c + a ,  that is, if and only if a = b = c . 
Note: Howard Cary Morris of Cordova, TN investigated 

f(a ,  b, c) = 
( 1 ) ( ab 

+ 
be 

+ __ c_
a_--=-

) 
a + b + c a + b + c + tc b + c + a  + ta c + a  + b + tb 
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for t > -1 .  He  observed that f (a ,  a ,  a) = 3�1 , and proved that this is the maxi
mum value of f(a ,  b ,  c) if and only if - 1  < t ::=:: 1 .  Indeed, f(a ,  b, c) ----+ � as 
(a , b, c) ----+ ( 1 ,  1 ,  0) , but 3�1 < � for t > 1 .  

Also solved by Herb Bailey, Roy Barbara (Lebanon), Mihaly Bencze (Romania), Pierre Bornsztein (France), 

Paul Bracken (Canada), Mordechai Falkowitz (Canada), Stephen Kaczkowski, Elias Lampakis (Greece), Phil 

McCartney, Kandasamy Muthuvel, Michael Reid, Michael Vowe (Switzerland), and the proposer. There were two 

incorrect submissions. 

An Isosceles Triangle? December 2001 
1635. Proposed by Larry Hoehn, Austin Peay State University, Clarksville, TN. 

Prove or disprove : If two cevians of a triangle are congruent and divide their respec
tive sides in the same proportion, then the triangle is isosceles. 

Solution by Michael Vowe, Therwil, Switzerland. 
In !:::.ABC ,  let D be on BC and E on AC, with AD = BE = p. Let BD = m, 

DC = n, BC = a = m + n , CE = r ,  EA = s ,  CA = b = r + s ,  and AB = c. By 
Stewart's Theorem, 

and 

If min = sir  = k, then the triangle is isosceles. In this case n = al (k + 1 ) ,  
m = akl (k + 1 ) ,  s = bkl (k + 1 ) ,  and r = bl (k + 1 ) .  From (*), with a little algebra 
we find (b2 - a2)k(k + 2) = 0. It follows that a = b .  

If  mIn = r Is = k, then the triangle need not be  isosceles.  In  this case we obtain 

We can use this to find examples for which the triangle is not isosceles. For example, 
set k = 1 12 and take a = 1 5 ,  m = 5 ,  n = 10, b = 12 ,  r = 4, s = 8, c = .J360, and 
note that p = AD = BE = ../238. 

Note: Herb Bailey of The Rose Hulman Institute of Technology, Terre Haute, IN, an
alyzed the situation for arbitrary real values of k. Stewart's Theorem (*) for the length 
of a cevian also holds if the cevian meets an extended side of the triangle, provided 
the lengths m ,  n ,  r, s are treated as directed distances .  The argument that !:::.ABC is 
isosceles provided mIn = r Is = k remains valid a s  long as  k =I= 0 ,  -1 ,  or -2 .  The 
case k = 0 occurs when D = B and E = A .  The case k = - 1 ,  a limiting case, occurs 
when the cevians from A and B are parallel to BC and C A, respectively, and points 
D and E are "at infinity." Both of these cases can occur when !:::.ABC is not isosceles. 
The case k = -2 arises as a solution of k2 + 2k = 0, and corresponds to the case in 
which D is the reflection of B in C, and E is the reflection of A in C. In this situation, 
ABED is a parallelogram, so AE=BD, but !:::.ABC need not be isosceles . 

The following readers proved that the triangle is isosceles in the mjn = sjr  case: Reza Akhlagi, Herb Bai

ley, Roy Barbara (Lebanon), Michel Bataille (France), David Carter, Con Amore Problem Group (Denmark), 

Lawrence D. Cutter, Daniele Donini (Italy), Ragnar Dybvik (Norway), Fejentalaltuka Szeged Problem Solving 

Semigroup (Hungary), Ovidiu Furdui, Jerrold W. Grossman, H. Guggenheimer; Brian Hogan, Geoffrey A. Kan

dall, Victor Y. Kutsenok, Elias Lampakis (Greece), Michael Reid, Joel Schlosberg, Rex H. Wu, Li Zhou, and the 

proposer. 

The following readers showed that the triangle need not be isosceles in the m/n = rjs case: Michel Bataille 

(France), Con Amore Problem Group (Denmark), Daniele Donini (Italy), Ovidiu Furdui, Jerrold W. Grossman, 

Brian Hogan, Geoffrey A. Kandall, Victor Y. Kutsenok, Ken Korbin, Michael Reid, Ralph Rush, and R. S. Tiberio. 
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Divisors of a Product December 2001 
1636. Proposed by Leroy Quet, Denver, CO. 

m 
For any positive integer m , define R (m)  = n k2k- 1-m . 

k= 1 

(a) Prove that R (m) is an integer that is divisible by every prime less than or equal to m 
if and only if either m + 1 is prime or (m + 1 )  j pk > p, where p is the largest prime 
dividing m + 1 and pk is the largest power of p that divides m + 1 .  

(b) Prove that if R (m) is not divisible by every prime less than or equal to m ,  then there 
is exactly one prime less than or equal to m that does not divide R (m) .  

Solution by Li Zhou, Polk Community College, Winter Haven, FL. 
For integer m � 2 we have, 

m- 1 k2k- 1 -(m- 1) mm- 1 
R (m) = mm-1 n = R (m - 1 ) .  

k= 1 k (m - 1 ) !  

It follows by induction that 

mm- 1 (m - om-2 0 0 0 32 0 2 1 m- 1 (m) 
R (m) = = . 

(m - l ) ! (m - 2) ! . .  · 2 ! . 1 !  !J k 

This proves that R (m) is an integer. For prime q , let eq (n ! )  = max{j : qj 
I n ! } and let 

sq (n) denote the sum of the digits in the base q expansion of n .  Let n = '£';0 djqj 
represent the base q expansion of n , so each dj is an integer with 0 ::::; dj ::::; q - 1 and 
dj = 0 for all sufficiently large j .  Then 

Now let q be a prime with q ::::; m .  Then the exponent on the largest power of q 
that divides R (m)  is L,;�/ (sq (k) + Sq (m - k) - sq (m) ) j (q - 1 ) .  Because sq (k) + 
sq (m - k) � sq (m) is always true, it follows that q f R (m) if and only if sq (k) + 
sq (m - k) = sq (m) for k = 1 ,  2, . . .  , m - 1 .  This is true if and only if for each such k 
there are no carries when the base q representations of k and m - k are added, that is, 
if and only if m = djqj + · · · + d1q + do with j � 1 , 1 ::::; dj ::::; q - 1 , and d; = q - 1 
for i = 0, 1 ,  . . .  , j - 1 .  Thus, 

q f R (m) if and only if m = . 
l qj+ 1 - 1 ,  

(dj + l )q l - 1 ,  

This equivalence establishes (a) and (b) . 

(the dj = q - 1 case) 

(the dj < q - 1 case) 

Also solved by Michel Bataille (France), Con Amore Problem Group (Denmark), Daniele Donini (Italy), 

Fejentalaltuka Szeged Problem Solving Semigroup (Hungary), and the proposer. 
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Rational Points, Irrational Spacing December 2001 

1637. Proposed by Erwin Just (Emeritus), Bronx Community College, Bronx, NY. 
Prove that the circle with equation x2 + y2 = 1 contains an infinite number of points 

with rational coordinates such that the distance between each pair of the points is 
irrational . 

Solution by Roy Barbara, Lebanese University, Fanar, Lebanon. 
Let p be a prime with p = l (mod 4) . Then there are positive integers a and b with 

p = a2 + b2 . The fractions xP = (a2 - b2)jp and yP = 2abjp are in lowest terms 
and the point P = (xp , Yp ) is on the unit circle. Let q i= p be an odd prime with 

q = c2 + d2 for some positive integers c and d, and let Q = ( (c2 - d2)jq ,  2cdjq ) .  
Then P i= Q and 

2 1ad - be l 
P Q = . 

m 
Because p and q are distinct primes, P Q is irrational. Because there are infinitely 
many primes that are congruent to 1 modulo 4, this construction provides a set of 
infinitely many points with rational coordinates on the unit circle and such that the 
distance between each pair of points in the set is irrational . 

Also solved by Reza Akhlaghi, Michael Andreoli, Michel Bataille (France), Brian D. Beasley, Mihaly Bencze 

(Romania), Alper Cay (Turkey), John Christopher, Charles R. Diminnie, Daniele Donini (Italy), Brenda Edmonds 

and Dale Hughes, Fejentalaltuka Szeged Problem Solving Semigroup (Hungary), FGCU Problem Group, Ovidiu 

Furdui, Ken Korbin, Elias Lampakis (Greece), David Levitt, Peter A. Lindstrom, Kandasamy Muthuvel, Michael 

Reid, Ralph Rush, Ossama A. Saleh and Stan Byrd, Achilleas Sinefakopoulos, Michael Vowe (Switzerland), Rex H. 

Wu, Li Zhou, and the proposer. There were two incorrect submissions. 

Answers 
Solutions to the Quickies from page 400. 
A925. Let D be the value of the determinant. Clearing fractions we have 

xyz (y + z) (z + x ) (x + y) D  = 

Because the resulting determinant vanishes when x = 0 or y = 0 or z = 0, it has xyz 
as a factor. Next note that if x + y + z = 0, then the determinant has three propor
tional rows. Hence the determinant in (*) also has (x + y + z)2 as a factor. Thus the 
determinant in ( *) has the form 

Pxyz (x + y + z) 2 • 

Because this determinant is a symmetric, homogeneous polynomial of degree 6, it fol
lows that P = k(x + y + z) for some constant k .  To determine k, set x = y = z = 1 . 
The determinant in ( *) then has value 54 and it follows that k = 2. We then find 

2(x + y + z)3 
D =  . 

(y + z) (z + x ) (x + y) 

A926. Let the vertices of !:::.ABC be given in counter-clockwise order, let D be a point 
in the plane of the triangle, and let A, B, and C, respectively, be the vectors from D to 
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A ,  B, and C .  It is known that 

A[DBC] + B[DCA] + C[DAB] = 0,  

where [X Y Z] denotes the directed area of L:.X Y Z .  Now let D be the circumcenter of 
!:. A B C .  Then 

[DE C] = ! I I B I I I I C I I  sin(LB DC) = ! I I B I I I I C I I  sin(2A) ,  

with similar expressions for [DC A ]  and [DA B ] .  Substitute these results into (*) ,  then 
calculate the length of the resulting expression. Noting that B · C = l i B  II II C l l cos(2A) ,  

with similar expression for C · A and A · B, w e  have 

0 = (A[DBC] + B[DCA] + C[DAB])  · (A[DBC] + B[DCA] + C[DAB])  

I I A I I 2 I I B I I 2 I I C I I 2 . . . . . = 
4 

( sm2 (2A) + sm2 (2B) + sm2 (2C) + 2 cos(2A) sm(2B) sm(2C) 

+ 2 cos (2B)  sin(2C) sin(2A) + 2 cos (2C) sin(2A) sin(2B) ) . 

Thus the expression in the problem statement is identically 0. 
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Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this 

section to call attention to interesting mathematical exposition that occurs outside the main
stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Mumford, David, Caroline Series, and David Wright, lndra 's Pearls: The Vision of Felix Klein, 
Cambridge University Press, 2002; xix + 396 pp, $50. ISBN 0--521-35253-3 . Frame, M.L.,  and 
B . B .  Mandelbrot, Fractals, Graphics, and Mathematics Education, MAA, 2002; xiii + 206 pp, 
$39.95 (P) . ISBN 0--88385-1 69-5 . 

lndra 's Pearls is an astonishing book, beyond a doubt the mathematical coffee-table book of 
the year. It is beautifully designed, brimming with colorful and intriguing fractals, equipped 
with biographical sidebars, and supplemented with cartoon drawings by Larry Gonick (of The 
Cartoon Guide to . . . fame) . Based on Klein's  Erlanger Programm, which combined symmetry, 
special functions, and Mobius transformations, the book features illustrations that render objects 
that Klein studied; and it explores his geometry in the light of the contemporary ideas of self
similarity, chaos, and fractals. The book can be enjoyed on many levels,  from leafing through the 
illustrations, dipping into the text here and there, to coding the algorithms to draw the fractals 
themselves.  Of course, one use of a mathematical coffee-table book is to help steer living-room 
discussion with guests to mathematics; the added advantage of this book is that you won't  know 
nearly everything that is in it, so you will have to read it first to be able to discuss it with guests ! 
Hint: Mathematicians may want to start from the little-mentioned "Road Map of Two-Generator 
Groups" on the last page. (The book's title refers to a Buddhist god with a net of shimmering 
pearls, in which each pearl reflects all the others, its reflections in them, and so forth.)  The other 
book, with "father of fractals" co-author Mandelbrot, focuses on how to teach fractals-"not 
primarily because fractals are important but because learning about fractals is, as one student 
put it, 'indescribably exciting . . . and simply intriguing."' The authors devote several chapters 
to explaining why and how, and the remaining dozen chapters are case studies by instructors of 
their experiences with teaching fractals at various levels. 

Robinson, Sara, M.C. Escher: More mathematics than meets the eye, SIAM News 35 (8) (Octo
ber 2002) 1 ,  8-9 . Mathematician fills in a bland for a fresh insight on art, New York Times (30 
July 2002) F3 . Escher and the Droste Effect, http : I /e s cherdro ste . math . l e idenuniv . nl / . 

M.C. Escher's 1 956 lithograph Print Gallery has a blank spot in the middle. Hendrik Lenstra 
(University of California-Berkeley and Universiteit Leiden) wondered why. The work exhibits 
continuous rotation and change of scale from border to blank spot. Lenstra determined the 
mathematical structure: The work is invariant under blowing up or shrinking by a factor of 256. 
He used elliptic curves to devise software that undid the conformal mapping in the print to 
render an undistorted version, hired an artist to fill in the missing patch in that, and then applied 
the mapping to get a "new and improved" version of the original print without a blank spot. You 
can see the process and results (including a zoom film) at the Web site indicated. (The name 
"Droste effect" comes from the Droste brand of cocoa. Its box shows a woman holding such 
a box, which shows a woman holding such a box, . . .  ; so the box illustrates invariance under 
change of scale, but without rotation.)  

406 
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Robinson, Sara, Computer scientists find unexpected depths i n  airfare search problem, SIAM 
News 35 (6) (July-August 2002) 1 ,  10 ;  http : //www . itasof tware . com/news/pr . s ima . php . 

Devlin, Keith, The crazy math of airline ticket pricing, http : I /www . maa . org/devlin/ 

devl in_09_02 . html . 

I hope that if you are attending the Joint Mathematics Meetings in January, you already have 
airline tickets at a good price. The disappointing but mathematically interesting news is that you 
almost certainly did not get the best price. That's  because the web of fares is so large and so 
complex: It is NP-hard to determine what flights satisfy which restrictions, NP-hard to find the 
best fare if the routes or flights are fixed, and plain unsolvable (i.e. , there can be no algorithm) 
if just origin and destination are prescribed. The reason for these discouraging results is that 
rules associated with a fare for one leg can restrict every leg on the same ticket. A consequence 
of all the interactions is that airlines cannot predict the effect of fare changes (which are issued 
10 times per day).  Why so much complexity? "[A]irlines executives claim . . .  there is no one 
price they can charge for a seat and still turn a profit. Either the price would be too high and 
the airline would not attract enough passengers to fill the plane, or the plane would be full, but 
the airline would not cover its costs." (Robinson) Who would have thought of the airlines as an 
engine of socialism? 

Ochert, Ayala, The mathematical mind, California Monthly 1 1 2 (5) (April 2002) 20-23.  

After citing the play Proof and the film A Beautiful Mind, this article asks: "What's behind 
our current fascination with the connection between madness and mathematical genius? And is 
there really any truth to the idea, or is it simply something we non-mathematicians would like 
to believe?" The article gives the varied opinions of Berkeley mathematicians. Robert Osser
man of MSRI claims that Nash, Cantor, and GOdel are hardly the rule ("Erdos was not mentally 
ill !") ;  Sara Robinson (formerly in the Ph.D. program) guesses that a larger fraction of mathe
maticians are mentally ill than other professionals;  and Hendrik Lenstra found his colleagues 
in Holland "all perfectly ordinary" but finds "oddball mathematicians" at Berkeley, perhaps be
cause it is a top department. Fortunately, author Ochert declares, "when you 're strange, and in 
a math department, no one seems to mind" [at least, no one in the math department] .  (Thanks 
to Fredricka Stoller of Northern Arizona University. ) 

Obituary 
DEATH ANNOUNCED . Quantum: The Magazine of Math and Science , 12 ,  a premier 
bimonthly magazine of mathematics and physics.  Born January 1990, removed from 
life support after July-August 200 1 .  Survived by its mother Kvant of Moscow, Rus
sia, and its father, the National Science Teachers Association (NSTA) of Arlington, 
Virginia. Its fraternal twin living abroad, Quantum (Greek edition), is presumed to 
have died two months later from the same financial disease. Support from Quan
tum's  godfather, the National Science Foundation, ended a few years into its life; its 
father and its foster uncle, Springer-Verlag New York, could not afford to maintain 
life support any longer. Much beloved by aficionados of mathematics and physics, 
from high-school students to college professors [including this Editor] , Quantum fea
tured exciting articles and problems at an elementary level (through calculus), exhib
ited wonderful four-color design and taste, and featured great art related to the math
ematics. A partial biography, index, and further information are at the memorial site, 
http : I /www . nsta . erg/quantum/Def ault . asp . Well-wishers may wish to send con
dolence subscription checks to Quantum's Russian mother Kvant, at Victor Kamkin 
Bookstore, 4956 Boiling Brook Parkway, Rockville MD 20852; (301 )  88 1-5973.  Per
haps MAA leaders could consult with NSTA and NCTM about sponsoring a cloning 
project to bring beloved Quantum back to life. 

Correction: In Reviews for October 2002 (Vol. 76, No. 4), the article by N. Seppa on smallpox 
inoculation appeared not in Science but in Science News (thanks to Barry Cipra). 
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